Advertisement

Origins of Life and Evolution of Biospheres

, Volume 43, Issue 4–5, pp 411–428 | Cite as

The Possible Interplanetary Transfer of Microbes: Assessing the Viability of Deinococcus spp. Under the ISS Environmental Conditions for Performing Exposure Experiments of Microbes in the Tanpopo Mission

  • Yuko Kawaguchi
  • Yinjie Yang
  • Narutoshi Kawashiri
  • Keisuke Shiraishi
  • Masako Takasu
  • Issay Narumi
  • Katsuya Satoh
  • Hirofumi Hashimoto
  • Kazumichi Nakagawa
  • Yoshiaki Tanigawa
  • Yoh-hei Momoki
  • Maiko Tanabe
  • Tomohiro Sugino
  • Yuta Takahashi
  • Yasuyuki Shimizu
  • Satoshi Yoshida
  • Kensei Kobayashi
  • Shin-ichi Yokobori
  • Akihiko YamagishiEmail author
Astrobiology

Abstract

To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10−1 Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to −80 °C in 90 min (±80 °C/90 min cycle) or from 60 °C to −60 °C in 90 min (±60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ±80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it ‘massapanspermia’.

Keywords

Panspermia Space exposure experiments of microbes Deinococcus Cell aggregation Massapanspermia 

Notes

Acknowledgments

We thank the HIMAC operators for their excellent technical assistance during the heavy-ion irradiation experiments. We also thank Dr. Kosuke Kurosawa for his valuable comments on the methods and physical laws that were used for solving the equations. We also thank all members of the Tanpopo mission for encouraging us on this work.

References

  1. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10:575–578Google Scholar
  2. Arrhenius S (1903) Die verbreitung des lebens im weltenraum. Umschau 7:481–485Google Scholar
  3. Baranov VM, Novikova ND, Polikarpov NA, Sychev VN, Levinskikh MA, Alekseev VR, Okuda T, Sugimoto M, Gusev OA, Grigor’ev AI (2009) The biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russian segment of the international space station: preliminary results. Doklady Biol Sci 426:267–270CrossRefGoogle Scholar
  4. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  5. Bauermeister A, Hahn C, Rettberg P, Reitz G, Moeller R (2012) Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans. Arch Microbiol 194:959–966PubMedCrossRefGoogle Scholar
  6. Berger T, Hajek M, Bilsk P, Kőrner C, Vanhavere F, Reitz G (2012) Cosmic radiation exposure of biological test systems during the EXPOSE-E mission. Astrobiology 12:387–392PubMedCentralPubMedCrossRefGoogle Scholar
  7. Blasius M, Hübscher U, Sommer S (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238 Google Scholar
  8. Clark BC (2001) Planetary interchange of bioactive material: probability factors and implications. Orig Life Evol Biosph 31:185–197PubMedCrossRefGoogle Scholar
  9. Cockell CS (2008) The interplanetary exchange of photosynthesis. Orig Life Evol Biosph 38:87–104PubMedCrossRefGoogle Scholar
  10. Cox CS (1993) Roles of water molecules in bacteria and viruses. Orig Life Evol Biosph 23:29–36PubMedCrossRefGoogle Scholar
  11. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245PubMedCrossRefGoogle Scholar
  12. de la Vega UP, Rettberg P, Reitz G (2007) Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans. Adv Space Res 11:1672–1677CrossRefGoogle Scholar
  13. de Vera J, Boettger U, de la Torre NR, Sánchez FJ, Grunow D, Schimiz N, Lange C, Hübers H, Billi D, Baqué M, Rettberg P, Rabbow E, Reitz G, Berger T, Möller R, Bohmeier M, Horneck G, Westall F, Jänchen J, Fritz J, Meyer C, Onofri S, Selbmann L, Zucconi L, Kozyrovska N, Leya T, Foing B, Demets R, Cockell CS, Bryce C, Wagner D, Serrano P, Edwards HGM, Joshi J, Huwe B, Ehrenfrieund P, Elsaesser A, Ott S, Meessen J, Feyh N, Szewzyk U, Jaumann R, Spohn T (2012) Supporting mars exploration: BIOMEX in Low earth orbit and further astrobiological studies on the moon using Raman and PanCam technology. Planet Space Sci 74:103–110CrossRefGoogle Scholar
  14. Dean CJ, Feldschreiber P, Lett JT (1966) Repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans. Nature 209:49–52PubMedCrossRefGoogle Scholar
  15. Dewey DL (1969) The survival of Micrococcus radiodurans irradiated at high LET and the effect of acridine orange. Int J Radiat Biol 16:583–592Google Scholar
  16. Dose K, Bieger-Dose A, Kerz O, Gill M (1991) DNA-strand breaks limit survival in extreme dryness. Orig Life Evol Biosph 21:177–187PubMedCrossRefGoogle Scholar
  17. Dose K, Bieger-Dose A, Dillman R, Gill M, Kerz O, Klein A, Meinert H, Nawroth T, Risi S, Stridde C (1995) ERA-experiment “Space Biochemistry”. Adv Space Res 16:119–129PubMedCrossRefGoogle Scholar
  18. Fajardo-Cavazos P, Schuerger AC, Nicholson WL (2007) Testing interplanetary transfer of bacteria between Earth and Mars as a result of natural impact phenomena and human spaceflight activities. Acta Astronaut 60:534–540CrossRefGoogle Scholar
  19. Gladman BJ, Burns JA, Duncan M, Lee P, Levison HF (1996) The exchange of impact ejecta between terrestrial planets. Science 271:1387–1392CrossRefGoogle Scholar
  20. Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65:7–17PubMedCrossRefGoogle Scholar
  21. Goossens O, Vanhavere F, Leys N, De Boever P, O’Sullivan D, Zhou D, Spurny F, Yukihara EG, Gaza R, McKeever SWS (2006) Radiation dosimetry for microbial experiment in the international space station using different etched track and luminescent detectors. Radiat Prot Dosim 120:433–437CrossRefGoogle Scholar
  22. Green RH, Taylor DM, Gustan EA, Fraser SJ, Olson RL (1971) Survival of microorganisms in a simulated Martian environment. Space Life Sci 3:12–24PubMedGoogle Scholar
  23. Hagen CA, Hawrylewicz EJ, Anderson BT, Cephus MJ (1970) Effect of ultraviolet radiation on the survival of bacteria airborne in simulated Martian dust clouds. Life Sci Space Res 8:53–56PubMedGoogle Scholar
  24. Hellweg CE, Baumstark-Khan C (2007) Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften 94:517–526PubMedCrossRefGoogle Scholar
  25. Hirose K, Sugahara H, Matsuno H (2002) Basic performance of VUV exposure system using head-on type Ar2* and Kr2* DBD excimer lamps. J Light Vis Environ 26:35–41CrossRefGoogle Scholar
  26. Horneck G (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Orig Life Evol Biosph 23:37–52PubMedCrossRefGoogle Scholar
  27. Horneck G, Bücker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45PubMedCrossRefGoogle Scholar
  28. Horneck G, Eschweiler U, Reitz G, Wehner J, Willimek R, Strauch K (1995) Biological response to space: results of the experiment “Exobiological Unit” of ERA on EURECA I. Adv Space Res 16:105–118PubMedCrossRefGoogle Scholar
  29. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion of panspermia. Orig Life Evol Biosph 31:527–547PubMedCrossRefGoogle Scholar
  30. Horneck G, Miliekowsky C, Melosh HJ, Wilson JW, Cucinotta FA, Gladman B (2002) Viable transfer of microorganisms in the solar system and beyond. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin, pp 55–76Google Scholar
  31. Horneck G, Moeller R, Cadet J, Douki T, Mancinelli RL, Nicholson WL, Pabitz C, Rabbow E, Rettberg P, Spry A, Stackebrandt E, Vaishampayan P, Venkateswaran KJ (2012) Resistance of bacterial endospores to outer space for planetary protection purposes—experiment PROTECT of the EXPOSE-E mission. Astrobiology 12:445–456Google Scholar
  32. Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JPP, Fritz J, Schade S, Artemieva NA (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8(1):17–44PubMedCrossRefGoogle Scholar
  33. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kobayashi Y, Shimizu T, Tanaka A, Kikuchi M, Taucher-Scholz G, Watanabe H (1995) RBE/LET effects of heavy ions on inactivation in dry cells of Deinococcus radiodurans. JAERI Rev 95-019 pp 44-46Google Scholar
  35. Lean J (1991) Variations in the Sun’s radiative output. Rev Geophys 29:505–535CrossRefGoogle Scholar
  36. Mattimore J, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedCentralPubMedGoogle Scholar
  37. Mennigmann HD (1989) Exobiology: results of spaceflight missions. Adv Space Res 9:3–12CrossRefGoogle Scholar
  38. Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space: I. From Mars to Earth and Earth to Mars. Icarus 145:391–427PubMedCrossRefGoogle Scholar
  39. Narumi I (2003) Unlocking radiation resistance mechanisms: still along way to go. Trends Microbiol 11:422–425PubMedCrossRefGoogle Scholar
  40. Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250PubMedCrossRefGoogle Scholar
  41. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572PubMedCentralPubMedCrossRefGoogle Scholar
  42. Nicholson WL, Schuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat Res 571:249–264PubMedCrossRefGoogle Scholar
  43. Olsson-Francis K, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13PubMedCrossRefGoogle Scholar
  44. Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516PubMedCrossRefGoogle Scholar
  45. Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970PubMedCentralPubMedCrossRefGoogle Scholar
  46. Paulino-Lima IG, Pilling S, Janot-Pacheco E, Naves de Brito A, Ribeiro Gonçalves Barbosa JA, Costa Leitão A, de Alencar Santos Lage C (2010) Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans. Planet Space Sci 58:1180–1187CrossRefGoogle Scholar
  47. Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von Heise-Rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386PubMedCrossRefGoogle Scholar
  48. Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM, Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215:163–168PubMedCrossRefGoogle Scholar
  49. Silverman GJ, Davis SN, Keller WH (1964) Exposure of microorganisms to simulated extraterrestrial space ecology. Life Sci Space Res 2:372–384PubMedGoogle Scholar
  50. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:131–191CrossRefGoogle Scholar
  51. Takahashi Y, Nakagawa T, Hashimoto H, Shibata S (2011) Survivability of moss and fungal spores in tests simulating conditions of the ISS outer wall. Biol Sci Space 25:83–92CrossRefGoogle Scholar
  52. Vanhaverea F, Genicota JL, O’Sullivanb D, Zhouc D, Spurnýd F, Jadrníčkovád I, Sawakuchie GO, Yukihara EG (2008) DOsimetry of BIological EXperiments in SPace (DOBIES) with luminescence (OSL and TL) and track etch detectors. Radiat Meas 43:694–697CrossRefGoogle Scholar
  53. Wilson JW, Cucinotta FA, Shinn JL, Simonsen LC, Dubey RR, Jordan WR, Jones TD, Chang CK, Kim MY (1999) Shielding from solar particle event exposures in deep space. Radiat Meas 30:361–382PubMedCrossRefGoogle Scholar
  54. Yamagishi A, Yano H, Okudaira K, Kobayashi K, Yokobori S, Tabata M, Kawai H, Yamashita M, Hashimoto H, Naraoka H, Mita H (2008) TANPOPO: astrobiology exposure and micrometeoroid capture experiments. Int Symp Space Tech Sci (ISTS) Web Paper Archives 2008-k-05Google Scholar
  55. Yang Y, Itahashi S, Yokobpri S, Yamagishi A (2008) UV-resistant bacteria isolated from upper troposphere and lower stratosphere. Biol Sci Space 22:18–25CrossRefGoogle Scholar
  56. Yang Y, Itoh T, Yokobori S, Itahashi S, Shimada H, Satoh K, Ohba H, Narumi I, Yamagishi A (2009a) Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59:1862–1866PubMedCrossRefGoogle Scholar
  57. Yang Y, Yokobori S, Yamagishi A (2009b) Bacterial survival in response to desiccation and high humidity at above zero and subzero temperatures. Adv Space Res 43:1285–1290CrossRefGoogle Scholar
  58. Yang Y, Yokobori S, Yamagishi A (2009c) Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol Sci Space 23:151–163CrossRefGoogle Scholar
  59. Yang Y, Itoh T, Yokobori S, Shimada H, Itahashi S, Satoh K, Ohba H, Narumi I, Yamagishi A (2010) Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol 60:776–779PubMedCrossRefGoogle Scholar
  60. Zagorski ZP (2007) Question2: relation of panspermia-hypothesis to astrobiology. Orig Life Evol Biosph 37:351–355PubMedCrossRefGoogle Scholar
  61. Zimmermann H, Schäfer M, Schmitz C, Bücker H (1994) Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1. Adv Space Res 14:213–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuko Kawaguchi
    • 1
  • Yinjie Yang
    • 1
    • 2
  • Narutoshi Kawashiri
    • 1
  • Keisuke Shiraishi
    • 1
  • Masako Takasu
    • 3
  • Issay Narumi
    • 4
    • 5
  • Katsuya Satoh
    • 4
  • Hirofumi Hashimoto
    • 6
  • Kazumichi Nakagawa
    • 7
  • Yoshiaki Tanigawa
    • 7
  • Yoh-hei Momoki
    • 7
  • Maiko Tanabe
    • 7
  • Tomohiro Sugino
    • 1
  • Yuta Takahashi
    • 1
  • Yasuyuki Shimizu
    • 1
  • Satoshi Yoshida
    • 8
  • Kensei Kobayashi
    • 9
  • Shin-ichi Yokobori
    • 1
  • Akihiko Yamagishi
    • 1
    Email author
  1. 1.Laboratory for Extremophiles, Department of Applied Molecular Biology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
  2. 2.Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  3. 3.Computational Biophysics Laboratory, Department of Molecular Biology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
  4. 4.Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy AgencyTakasakiJapan
  5. 5.Graduate school of Life SciencesToyo UniversityOra-gunJapan
  6. 6.Institute of Space and Astronautical Science, JAXASagamiharaJapan
  7. 7.Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
  8. 8.National Institute of Radiological SciencesChibaJapan
  9. 9.Graduate School of EngineeringYokohama National UniversityHodogaya-kuJapan

Personalised recommendations