Advertisement

Origins of Life and Evolution of Biospheres

, Volume 42, Issue 5, pp 507–516 | Cite as

Open Questions on the Origin of Life at Anoxic Geothermal Fields

  • Armen Y. Mulkidjanian
  • Andrew Yu. Bychkov
  • Daria V. Dibrova
  • Michael Y. Galperin
  • Eugene V. Koonin
Conference Report

Abstract

We have recently reconstructed the ‘hatcheries’ of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821–830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.

Keywords

Geothermal separation Hydrothermal alteration Formamide Borate Zinc sulfide K+/Na+ ratio 

Notes

Acknowledgments

Valuable discussions with participants of the meeting on the Open Questions on the Origin of Life at the University of Leicester are greatly appreciated. This study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG-Mu-1285/1-10, DFG-436-RUS 113/963/0-1), the Russian Government (№ 02.740.11.5228) and the Volkswagen Foundation to A.Y.M., from the Russian Foundation for Basic Research to A.Y.M. (RFBR 0-04-91331) and A.Y.B. (RFBR 10-05-00320), from the Deutscher Akademischer Austausch Dienst to D.V.D., and by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health (M.Y.G., E.V.K).

References

  1. Aver'ev VV (1961) Conditions for the discharge of the Pauzhetka high-temperature waters in Southern Kamchatka. In: Proceedings of the Volcanology Laboratory of the Russian Academy of Sciences, Issue 19. Moscow, pp 90–98Google Scholar
  2. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 11(9):1240–1243PubMedCrossRefGoogle Scholar
  3. Belozersky AN (1959) On the species specificity of the nucleic acids of bacteria. In: Oparin AI, Pasynskii AG, Braunshtein AE, Pavlovskaya TE, Clark F, Synge RLM (eds) The origin of life on the earth. Pergamon Publishers, London, pp 322–331Google Scholar
  4. Benner SA, Carrigan MA, Ricardo A, Frye F (2006) Setting the stage: the history, chemistry and geobiology behind RNA. In: Gesteland RF, Cech TR, Atkins J (eds) The RNA world, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Springs HarborGoogle Scholar
  5. Biello D (2012) Did life’s first cells evolve in geothermal pools? Scientific American (on-line edition, http://www.scientificamerican.com/article.cfm?id=did-life-first-evolve-in-geothermal-pools)
  6. Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457(7232):977–980PubMedCrossRefGoogle Scholar
  7. Bortnikova SB, Gavrilenko GM, Bessonova EP, Lapukhov AS (2009) The hydrogeochemistry of thermal springs on Mutnovskii Volcano, southern Kamchatka. J Volcanol Seismol 3(6):388–404CrossRefGoogle Scholar
  8. Brouwers L (2012) Did life evolved in a “warm little pond”. Scientific American (Blogs, http://blogs.scientificamerican.com/thoughtomics/2012/2002/2016/did-life-evolve-in-a-warm-little-pond/)
  9. Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44(12):1302–1311PubMedCrossRefGoogle Scholar
  10. Bychkov AY (2009) Geochemical model of present-day ore formation in the Uzon Caldera. GEOS, MoscowGoogle Scholar
  11. Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res 14(12):2469–2477PubMedCrossRefGoogle Scholar
  12. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282(23):16729–16735PubMedCrossRefGoogle Scholar
  13. Davidovich C, Belousoff M, Bashan A, Yonath A (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160(7):487–492PubMedCrossRefGoogle Scholar
  14. Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S (2006) Self-assembly processes in the prebiotic environment. Philos Trans R Soc Lond B Biol Sci 361(1474):1809–1818PubMedCrossRefGoogle Scholar
  15. Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61(2):239–261PubMedGoogle Scholar
  16. Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci U S A 107(23):10567–10572PubMedCrossRefGoogle Scholar
  17. Fournier RO (2004) Geochemistry and dynamics of the Yellowstone National Park Hydrothermal System. US Geological Survey, Menlo ParkGoogle Scholar
  18. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  19. Gogarten JP et al (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A 86(17):6661–6665PubMedCrossRefGoogle Scholar
  20. Guzman MI, Martin ST (2009) Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9(9):833–842PubMedCrossRefGoogle Scholar
  21. Hazen RM et al (2011) Needs and opportunities in mineral evolution research. Am Mineral 96(7):953–963CrossRefGoogle Scholar
  22. Holloway JM, Dahlgren RA (2002) Nitrogen in rock: occurrences and biogeochemical implications. Glob Biogeochem Cycles 16(4)Google Scholar
  23. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456(7221):493–496PubMedCrossRefGoogle Scholar
  24. Kinoshita N, Unemoto T, Kobayashi H (1984) Proton motive force is not obligatory for growth of Escherichia coli. J Bacteriol 160(3):1074–1077PubMedGoogle Scholar
  25. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–136PubMedCrossRefGoogle Scholar
  26. Lazcano A, Forterre P (1999) The molecular search for the last common ancestor. J Mol Evol 49(4):411–412PubMedCrossRefGoogle Scholar
  27. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317(1):41–72PubMedCrossRefGoogle Scholar
  28. Lowenstein JM (1960) The stimulation of transphosphorylation by alkali-metal ions. Biochem J 75:269–274PubMedGoogle Scholar
  29. Macallum AB (1926) The paleochemistry of the body fluids and tissues. Physiol Rev 6(2):316–357Google Scholar
  30. Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454(7200):122–125PubMedCrossRefGoogle Scholar
  31. Miskin R, Zamir A, Elson D (1970) Inactivation and reactivation of ribosomal subunits: the peptidyl transferase activity of the 50 s subunit of Escherihia coli. J Mol Biol 54(2):355–378PubMedCrossRefGoogle Scholar
  32. Mukhin LM (1976) Volcanic processes and synthesis of simple organic compounds on primitive earth. Orig Life 7(4):355–368PubMedCrossRefGoogle Scholar
  33. Mulkidjanian AY (2009) On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4:26PubMedCrossRefGoogle Scholar
  34. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 109(14):E821–E830PubMedCrossRefGoogle Scholar
  35. Mulkidjanian AY, Galperin MY (2007) Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers 4(9):2003–2015PubMedCrossRefGoogle Scholar
  36. Mulkidjanian AY, Galperin MY (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27PubMedCrossRefGoogle Scholar
  37. Mulkidjanian AY, Galperin MY (2010) Evolutionary origins of membrane proteins. In: Frishman D (ed) Structural bioinformatics of membrane proteins. Springer, Vienna, pp 1–28CrossRefGoogle Scholar
  38. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34(4):206–215PubMedCrossRefGoogle Scholar
  39. Natochin YV (2007) The physiological evolution of animals: sodium is the clue to resolving contradictions. Her Russ Acad Sci 77(6):581–591CrossRefGoogle Scholar
  40. Nies DH (2007) Bacterial transition metal homeostasis. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 117–142CrossRefGoogle Scholar
  41. Nikolaeva IY, Bychkov AY (2007) Gas-liquid distribution of boron in hydrotermal springs of Mutnovski volcano. Her Kamchatka Res Cent (Vestnik KRAUNZ) 10(2):34–43Google Scholar
  42. Nold SC, Ward DM (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl Environ Microbiol 62(12):4598–4607PubMedGoogle Scholar
  43. Ohki S, Duzgunes N, Leonards K (1982) Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry 21(9):2127–2133PubMedCrossRefGoogle Scholar
  44. Pech H, Henry A, Khachikian CS, Salmassi TM, Hanrahan G, Foster KL (2009) Detection of geothermal phosphite using high-performance liquid chromatography. Environ Sci Technol 43(20):7671–7675PubMedCrossRefGoogle Scholar
  45. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242PubMedCrossRefGoogle Scholar
  46. Raymond J, Williams-Jones AE, Clark JR (2005) Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. J Volcanol Geotherm Res 145(1–2):81–96CrossRefGoogle Scholar
  47. Reyes AG, Cardile CM (1989) Characterization of clay scales forming in Philippine geothermal wells. Geothermics 18:429–446CrossRefGoogle Scholar
  48. Ricardo A, Szostak JW (2009) Origin of life on earth. Sci Am 301(3):54–61PubMedCrossRefGoogle Scholar
  49. Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Formamide and the origin of life. Phys Life Rev 9(1):84–104PubMedCrossRefGoogle Scholar
  50. Schatz OJ, Dolejs D, Stix J, Williams-Jones AE, Layne GD (2004) Partitioning of boron among melt, brine and vapor in the system haplogranite-H2O-NaCl at 800 °C and 100 MPa. Chem Geol 210(1–4):135–147CrossRefGoogle Scholar
  51. Schoffstall AM (1976) Prebiotic phosphorylation of nucleosides in formamide. Orig Life 7(4):399–412PubMedCrossRefGoogle Scholar
  52. Shiman R, Draper DE (2000) Stabilization of RNA tertiary structure by monovalent cations. J Mol Biol 302(1):79–91PubMedCrossRefGoogle Scholar
  53. Sigel RKO, Pyle AM (2007) Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem Rev 107(1):97–113PubMedCrossRefGoogle Scholar
  54. Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc Lond B Biol Sci 366(1580):2857–2869PubMedCrossRefGoogle Scholar
  55. Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci U S A 101(35):12818–12823PubMedCrossRefGoogle Scholar
  56. Switek B (2012) Debate bubbles over the origin of life. Nature (online issue, http://www.nature.com/news/debate-bubbles-over-the-origin-of-life-1.10024)
  57. Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Philos Trans R Soc Lond B Biol Sci 362(1486):1781–1787PubMedCrossRefGoogle Scholar
  58. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390PubMedCrossRefGoogle Scholar
  59. Wald G (1964) The origins of life. Proc Natl Acad Sci U S A 52(2):595–611PubMedCrossRefGoogle Scholar
  60. White DE, Muffler LJP, Truesdell AN (1971) Vapor-dominated hydrothermal systems compared with hot-water systems. Econ Geol 66:75–97CrossRefGoogle Scholar
  61. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817):175–178PubMedCrossRefGoogle Scholar
  62. Williams RJP, Frausto da Silva JJR (1991) The biological chemistry of the elements. Clarendon, OxfordGoogle Scholar
  63. Woese C (1998) The universal ancestor. Proc Natl Acad Sci U S A 95(12):6854–6859PubMedCrossRefGoogle Scholar
  64. Zhang XV, Ellery SP, Friend CM, Holland HD, Michel FM, Schoonen MAA, Martin ST (2007) Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J Photochem Photobiol A Chem 185(2–3):301–311CrossRefGoogle Scholar
  65. Zhang XV, Martin ST, Friend CM, Schoonen MAA, Holland HD (2004) Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon(+IV) by manganese sulfide. J Am Chem Soc 126(36):11247–11253PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Armen Y. Mulkidjanian
    • 1
    • 4
    • 5
  • Andrew Yu. Bychkov
    • 2
  • Daria V. Dibrova
    • 1
    • 4
  • Michael Y. Galperin
    • 3
  • Eugene V. Koonin
    • 3
  1. 1.School of PhysicsUniversity of OsnabrueckOsnabrueckGermany
  2. 2.School of GeologyMoscow State UniversityMoscowRussia
  3. 3.National Center for Biotechnology InformationNational Library of Medicine, National Institutes of HealthBethesdaUSA
  4. 4.School of Bioengineering and BioinformaticsM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.A.N. Belozersky Institute of Physico-Chemical BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations