Origins of Life and Evolution of Biospheres

, Volume 42, Issue 5, pp 469–474 | Cite as

Is There an Optimal Level of Open-Endedness in Prebiotic Evolution?

  • Omer Markovitch
  • Daniel Sorek
  • Leong Ting Lui
  • Doron Lancet
  • Natalio Krasnogor
Conference Report

Abstract

In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study - under a unified and concise prebiotic evolutionary framework - both a variety of initial conditions of the universe and the OEE of species that evolve from them.

Keywords

Complexity Compotype Compositional Information Simulations Replication 

References

  1. Bedau MA, McCaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ikegami T, Kaneko K, Ray TS (2000) Open problems in artificial life. Artif Life 6(4):363–376PubMedCrossRefGoogle Scholar
  2. Eigen M, Schuster P (1977) Hypercycle - principle of natural self-organization. A. Emergence of hypercycle. Naturwissenschaften 64(11):541–565PubMedCrossRefGoogle Scholar
  3. Korb KB, Dorin A (2011) Evolution unbound: releasing the arrow of complexity. Biol Philos 26(3):317–338. doi:10.1007/s10539-011-9254-6 CrossRefGoogle Scholar
  4. Markovitch O, Lancet D (2012) Excess mutual catalysis is required for effective evolvability. Artif Life 18(3)Google Scholar
  5. McMullin B (2000) John von Neumann and the evolutionary growth of complexity: looking backward, looking forward …. Artif Life 6(4):347–361PubMedCrossRefGoogle Scholar
  6. Mcshea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48(6):1747–1763CrossRefGoogle Scholar
  7. Neef A, Latorre A, Pereto J, Silva FJ, Pignatelli M, Moya A (2011) Genome economization in the endosymbiont of the wood roach cryptocercus punctulatus Due to drastic loss of amino acid synthesis capabilities. Genome Biol Evol 3:1437–1448. doi:10.1093/Gbe/Evr118 PubMedCrossRefGoogle Scholar
  8. Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Origins Life Evol B 34(3):323–346CrossRefGoogle Scholar
  9. Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. P Natl Acad Sci USA 97(8):4112–4117CrossRefGoogle Scholar
  10. Shenhav B, Oz A, Lancet D (2007) Coevolution of compositional protocells and their environment. Phil Trans R Soc B-Biol Sci 362(1486):1813–1819CrossRefGoogle Scholar
  11. Taylor TJ (1999) From artificial evolution to artificial life. Unpublished Ph.D. Thesis. University of Edinburg, EdinburgGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Omer Markovitch
    • 1
  • Daniel Sorek
    • 1
  • Leong Ting Lui
    • 2
  • Doron Lancet
    • 1
  • Natalio Krasnogor
    • 2
  1. 1.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
  2. 2.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations