Origins of Life and Evolution of Biospheres

, Volume 42, Issue 5, pp 459–468 | Cite as

The Role of Energy in the Emergence of Biology from Chemistry

  • Daria V. Dibrova
  • Michail Y. Chudetsky
  • Michael Y. Galperin
  • Eugene V. Koonin
  • Armen Y. Mulkidjanian
Conference Report


Any scenario of the transition from chemistry to biology should include an “energy module” because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.


Bioenergetics Cyclic nucleotides ATP Membrane potential Evolution of membranes Isoprenoid membranes 



Valuable discussions with participants of the meeting on the Open Questions on the Origin of Life at the University of Leicester are greatly appreciated. This study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG-Mu-1285/1-10, DFG-436-RUS 113/963/0-1), the Russian Government (№ 02.740.11.5228) and the Volkswagen Foundation to A.Y.M., from the Russian Foundation for Basic Research to A.Y.M. (RFBR 0-04-91331), from the Deutscher Akademischer Austausch Dienst to D.V.D., and by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health (M.Y.G., E.V.K).


  1. Anbar AD, Holland HD (1992) The photochemistry of manganese and the origin of banded iron formations. Geochim Cosmochim Acta 56:2595–2603PubMedCrossRefGoogle Scholar
  2. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 11:1240–1243PubMedCrossRefGoogle Scholar
  3. Benner SA, Carrigan MA, Ricardo A, Frye F (2006) Setting the stage: The history, chemistry and geobiology behind RNA. In: Gesteland RF, Cech TR, Atkins J (eds) The RNA world, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Springs HarborGoogle Scholar
  4. Boucher Y, Kamekura M, Doolittle WF (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol Microbiol 52:515–527PubMedCrossRefGoogle Scholar
  5. Bryant DE, Marriott KE, Macgregor SA, Kilner C, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate-pyruvate system. Chem Commun (Camb) 46:3726–3728CrossRefGoogle Scholar
  6. Cherepanov DA, Mulkidjanian AY, Junge W (1999) Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett 449:1–6PubMedCrossRefGoogle Scholar
  7. Cohn CA, Borda MJ, Schoonen MA (2004) RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet Sci Lett 225:271–278CrossRefGoogle Scholar
  8. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282:16729–16735PubMedCrossRefGoogle Scholar
  9. Costanzo G, Pino S, Botta G, Saladino R, Di Mauro E (2011) May cyclic nucleotides be a source for abiotic RNA synthesis? Orig Life Evol Biosph 41:559–562PubMedCrossRefGoogle Scholar
  10. David LA, Alm EJ (2011) Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96PubMedCrossRefGoogle Scholar
  11. Deamer DW (1987) Proton permeation of lipid bilayers. J Bioenerg Biomembr 19:457–479PubMedGoogle Scholar
  12. Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61:239–261PubMedGoogle Scholar
  13. Dibrova DV, Galperin MY, Mulkidjanian AY (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 26:1473–1476PubMedCrossRefGoogle Scholar
  14. Dibrova DV, Makarova KS, Galperin MY, Koonin EV, Mulkidjanian AY (2011) Comparative analysis of lipid biosynthesis in Archaea and Bacteria: What was the structure of first membrane lipids? In: Proceedings of the International Moscow Conference on Computational Molecular Biology. Moscow State University, Moscow, pp 92–93Google Scholar
  15. Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318:11–51PubMedCrossRefGoogle Scholar
  16. Gotoh M, Miki A, Nagano H, Ribeiro N, Elhabiri M, Gumienna-Kontecka E, Albrecht-Gary AM, Schmutz M, Ourisson G, Nakatani Y (2006) Membrane properties of branched polyprenyl phosphates, postulated as primitive membrane constituents. Chem Biodivers 3:434–455PubMedCrossRefGoogle Scholar
  17. Gotoh M, Sugawara A, Akiyoshi K, Matsumoto I, Ourisson G, Nakatani Y (2007) Possible molecular evolution of biomembranes: from single-chain to double-chain lipids. Chem Biodivers 4:837–848PubMedCrossRefGoogle Scholar
  18. Graf B, Muhler M (2011) The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Phys Chem Chem Phys 13:3701–3710PubMedCrossRefGoogle Scholar
  19. Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470:185–201PubMedCrossRefGoogle Scholar
  20. Kauffman S (2007) Origin of life and the living state. Orig Life Evol Biosph 37:315–322PubMedCrossRefGoogle Scholar
  21. Khushalani D, Kuperman A, Coombs N, Ozin GA (1996) Mixed surfactant assemblies in the synthesis of mesoporous silicas. Chem Mater 8:2188–2193CrossRefGoogle Scholar
  22. Kissin YV (2003) Hydrocarbon components in carbonaceous meteorites. Geochim Cosmochim Ac 67:1723–1735CrossRefGoogle Scholar
  23. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136PubMedCrossRefGoogle Scholar
  24. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654PubMedCrossRefGoogle Scholar
  25. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280PubMedCrossRefGoogle Scholar
  26. Lazcano A, Miller SL (1999) On the origin of metabolic pathways. J Mol Evol 49:424–431PubMedCrossRefGoogle Scholar
  27. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99PubMedCrossRefGoogle Scholar
  28. Lowenstein JM (1960) The stimulation of transphosphorylation by alkali-metal ions. Biochem J 75:269–274PubMedGoogle Scholar
  29. Luoto HH, Belogurov GA, Baykov AA, Lahti R, Malinen AM (2011) Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. J Biol Chem 286:21633–21642PubMedCrossRefGoogle Scholar
  30. MacLachlan MJ, Coombs N, Ozin GA (1999) Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)(4-) clusters. Nature 397:681–684CrossRefGoogle Scholar
  31. Mansy SS (2010) Membrane transport in primitive cells. Cold Spring Harb Perspect Biol 2:a002188PubMedCrossRefGoogle Scholar
  32. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–83PubMedCrossRefGoogle Scholar
  33. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887–1925PubMedCrossRefGoogle Scholar
  34. McCollom TM, Ritter G, Simoneit BR (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166PubMedCrossRefGoogle Scholar
  35. Miller SL, Cleaves HJ (2006) Prebiotic chemistry on the primitive Earth. In: Rigoutsos I, Stephanopoulos G (eds) Systems biology, vol I, Genomics. Oxford University Press, Oxford, pp 4–56Google Scholar
  36. Mulkidjanian AY (2009) On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4:26PubMedCrossRefGoogle Scholar
  37. Mulkidjanian AY (2011) Energetics of the first life. In: Egel E, Lankenau D-H, Mulkidjanian AY (eds) Origind of life: The primal self-organization. Springer Verlag, Heidelberg, pp 3–33CrossRefGoogle Scholar
  38. Mulkidjanian AY, Galperin MY (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27PubMedCrossRefGoogle Scholar
  39. Mulkidjanian AY, Galperin MY (2010) Evolutionary origins of membrane proteins. Struct Bioinform Membr Proteins. doi: 10.1007/978-3-7091-0045-5_1
  40. Mulkidjanian AY, Cherepanov DA, Galperin MY (2003) Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light. BMC Evol Biol 3:12PubMedCrossRefGoogle Scholar
  41. Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899PubMedCrossRefGoogle Scholar
  42. Mulkidjanian AY, Dibrov P, Galperin MY (2008a) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992PubMedCrossRefGoogle Scholar
  43. Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV (2008b) Evolutionary primacy of sodium bioenergetics. Biol Direct 3:13PubMedCrossRefGoogle Scholar
  44. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34:206–215PubMedCrossRefGoogle Scholar
  45. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012a) Open questions on the origin of life at anoxic geothermal fields. Orig Life Evol Biosph. doi: 10.1007/s11084-012-9315-0
  46. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012b) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 109:E821–E830PubMedCrossRefGoogle Scholar
  47. Nomura SM, Yoshikawa Y, Yoshikawa K, Dannenmuller O, Chasserot-Golaz S, Ourisson G, Nakatani Y (2001) Towards proto-cells: “primitive” lipid vesicles encapsulating giant DNA and its histone complex. ChemBioChem 2:457–459PubMedCrossRefGoogle Scholar
  48. Nooner DW, Gibert JM, Gelpi E, Oro J (1976) Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. Geochim Cosmochim Acta 40:915–924CrossRefGoogle Scholar
  49. Oparin AI (1924) The origin of life. Moskowskiy rabochiy, MoscowGoogle Scholar
  50. Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem Biol 1:11–23PubMedCrossRefGoogle Scholar
  51. Pascal R, Boiteau L (2011) Energy flows, metabolism and translation. Philos Trans R Soc Lond B Biol Sci 366:2949–2958PubMedCrossRefGoogle Scholar
  52. Pasek MA, Kee TP (2011) Energetics of the first life. In: Egel H, Lankenau D-H, Mulkidjanian AY (eds) On the origin of phosphorylated biomolecules. Springer, Heidelberg, pp 57–84Google Scholar
  53. Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed Engl 47:7918–7920PubMedCrossRefGoogle Scholar
  54. Pinti DL (2005) The origin and evolution of the oceans. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Springer-Verlag, Berlin, pp 83–111CrossRefGoogle Scholar
  55. Pogoryelov D, Krah A, Langer JD, Yildiz O, Faraldo-Gomez JD, Meier T (2010) Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. Nat Chem Biol 6:891–899PubMedCrossRefGoogle Scholar
  56. Ponnamperuma C, Sagan C, Mariner R (1963) Synthesis of adenosine triphosphate under possible primitive Earth conditions. Nature 199:222–226PubMedCrossRefGoogle Scholar
  57. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242PubMedCrossRefGoogle Scholar
  58. Ravoo BJ, Engberts JBFN (1994) Single-tail phosphates containing branched alkyl chains—synthesis and aggregation in water of a novel class of vesicle-forming surfactants. Langmuir 10:1735–1740CrossRefGoogle Scholar
  59. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012a) From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie 94:1451–1456PubMedCrossRefGoogle Scholar
  60. Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012b) Formamide and the origin of life. Phys Life Rev 9:84–104PubMedCrossRefGoogle Scholar
  61. Schoffstall AM (1976) Prebiotic phosphorylation of nucleosides in formamide. Orig Life 7:399–412PubMedCrossRefGoogle Scholar
  62. Serrano-Andres L, Merchan M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol C Photochem Rev 10:21–32CrossRefGoogle Scholar
  63. Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468–1484PubMedCrossRefGoogle Scholar
  64. Sobolewski AL, Domcke W (2006) The chemical physics of the photostability of life. Europhys News 37:20–23CrossRefGoogle Scholar
  65. Soler-Illia GJ, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138PubMedCrossRefGoogle Scholar
  66. Stillwell W, Winter HC (1974) The stimulation of diffusion of adenine nucleotides across bimolecular lipid membranes by divalent metal ions. Biochem Biophys Res Commun 56:617–622PubMedCrossRefGoogle Scholar
  67. Szathmáry E (2007) Coevolution of metabolic networks and membranes: the scenario of progressive sequestration. Philos Trans R Soc Lond B Biol Sci 362:1781–1787PubMedCrossRefGoogle Scholar
  68. Takeuchi N, Hogeweg P (2012) Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life. Phys Life Rev 9:219–263Google Scholar
  69. Verlander MS, Lohrmann R, Orgel LE (1973) Catalysts for the self-polymerization of adenosine cyclic 2′, 3′-phosphate. J Mol Evol 2:303–316PubMedCrossRefGoogle Scholar
  70. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A 87:200–204PubMedCrossRefGoogle Scholar
  71. Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602PubMedCrossRefGoogle Scholar
  72. Walker JE (1998) ATP synthesis by rotary catalysis (Nobel Lecture). Angew Chem Int Ed 37:2309–2319CrossRefGoogle Scholar
  73. Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827PubMedCrossRefGoogle Scholar
  74. Yoshina-Ishii C, Asefa T, Coombs N, MacLachlan MJ, Ozin GA (1999) Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica. Chem Commun 2539–2540Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Daria V. Dibrova
    • 1
    • 2
  • Michail Y. Chudetsky
    • 3
  • Michael Y. Galperin
    • 4
  • Eugene V. Koonin
    • 4
  • Armen Y. Mulkidjanian
    • 1
    • 2
    • 5
    • 6
  1. 1.School of PhysicsUniversity of OsnabrückOsnabrückGermany
  2. 2.School of Bioengineering and BioinformaticsM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Oil and Gas ProblemsRussian Academy of SciencesMoscowRussia
  4. 4.National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaUSA
  5. 5.A.N. Belozersky Institute of Physico-Chemical BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  6. 6.School of PhysicsUniversity of OsnabrueckOsnabrueckGermany

Personalised recommendations