LIFE Experiment: Isolation of Cryptoendolithic Organisms from Antarctic Colonized Sandstone Exposed to Space and Simulated Mars Conditions on the International Space Station

  • Giuliano Scalzi
  • Laura Selbmann
  • Laura Zucconi
  • Elke Rabbow
  • Gerda Horneck
  • Patrizia Albertano
  • Silvano Onofri
Astrobiology

Abstract

Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE—Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

Keywords

Antarctic colonized rocks EXPOSE-E International space station Lithopanspermia Lichens and Fungi Experiment 

References

  1. Berger T, Hajek M, Bilski P, Vanhavere F, Horwacik T, Körner C, Reitz G (2012) Measurements of the dose due to ionizing radiation within the EXPOSE-E experiment applying passive radiation detectors. Astrobiology 12 (in press)Google Scholar
  2. Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 4:253–279CrossRefGoogle Scholar
  3. De la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 215:3858–3867CrossRefGoogle Scholar
  4. De la Torre R, Sancho L, Horneck G, de los Ríos A, Wierzchos J, Olsson-Francis K, Cockell CS, Rettberg P, Berger T, de Vera JPP, Ott S, Martinez Frías J, Melendi PG, Lucas MM, Reina M, Pintado A, Demets R (2010) Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus 208:735–748CrossRefGoogle Scholar
  5. De los Ríos A, Wiezchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152PubMedCrossRefGoogle Scholar
  6. De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens ingranite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190CrossRefGoogle Scholar
  7. De Vera JP, Horneck G, Rettberg P, Ott S (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space—II: germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33:1236–1243PubMedCrossRefGoogle Scholar
  8. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  9. Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic Cold Desert. Science 236:645–652Google Scholar
  10. Gladman BJ, Burns JA, Duncan M, Lee P, Levison HF (1996) The exchange of impact ejecta between terrestrial planets. Science 271:1387–1392CrossRefGoogle Scholar
  11. Horneck G, Bucker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45PubMedCrossRefGoogle Scholar
  12. Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Schade S, Artemieva NA (2008) Microbial rock inhabitants survive impact and ejection from host planet: first phase of lithopanspermia experimentally tested. Astrobiology 8:17–44PubMedCrossRefGoogle Scholar
  13. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156PubMedCrossRefGoogle Scholar
  14. Katana A, Kwiatowski J, Spalik K, Zakrys B, Szalacha E, Szymanska H (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol 37:443–451CrossRefGoogle Scholar
  15. Mancinelli RL, Klovstad M (2000) Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet Space Sci 48:1093–1097CrossRefGoogle Scholar
  16. Mileikowsky C, Cucinotta F, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space, Part 1: from Mars to Earth and Earth to Mars. Icarus 145:391–427PubMedCrossRefGoogle Scholar
  17. Moro CV, Crouzet O, Rasconi S, Thouvenot A, Coffe G, Batisson I, Bohatier J (2009) New design strategy for development of specific primer sets for PCR-based detection of Chlorophyceae and Bacillariophyceae in environmental samples. Appl Environ Microbiol 75:5729–5733PubMedCrossRefGoogle Scholar
  18. Nägeli C (1849) Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschriften der Allg. Schweiz Ges Gesammten Naturwissenschaften 10(7):i–viii, 1–139, pls I–VIIIGoogle Scholar
  19. Neustupa J, Elias M, Sejnohova L (2007) A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwig 84:51–63CrossRefGoogle Scholar
  20. Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250PubMedCrossRefGoogle Scholar
  21. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 343–412Google Scholar
  22. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237CrossRefGoogle Scholar
  23. Onofri S, Selbman L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664CrossRefGoogle Scholar
  24. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JP, Hatton J, Zucconi L (2009) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109CrossRefGoogle Scholar
  25. Onofri S, De la Torre R, De Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sanchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 year in outer space. Astrobiology 12 (in publ.)Google Scholar
  26. Rabbow E, Horneck G, Rettberg P, Schott JU, Panitz C, L’Afflitto A, von Heise-Rotenburg R, Willnecker R, Baglioni P, Hatton J, Dettmann J, Demets R, Reitz G (2009) EXPOSE, an astrobiological exposure facility on the international space station—from proposal to flight. Orig Life Evol B 39(6):581–598CrossRefGoogle Scholar
  27. Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von Heise-Rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G (2012) EXPOSE-E, an ESA Astrobiology mission 1.5 years in space. Astrobiology 12 (in press)Google Scholar
  28. Raggio J, Pintado A, Ascaso C, De la Torre R, De los Ríos A, Wierzchos J, Horneck G, Sancho LG (2011) Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 4:281–292CrossRefGoogle Scholar
  29. Rothschild LJ, Mancinelli RL (2001) Life in estreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  30. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  31. Sancho LG, De la Torre R, Horneck G, Ascaso C, De los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454PubMedCrossRefGoogle Scholar
  32. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  33. Selbmann L, De Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedCrossRefGoogle Scholar
  34. Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944PubMedCrossRefGoogle Scholar
  35. Valtonen M, Nurmi P, Zheng JQ, Cucinotta FA, Wilson JW, Horneck G, Lindegren L, Melosh J, Rickman H, Mileikowsky C (2009) Natural transfer of viable microbes in space from planets in the extra-solar systems to a planet in our Solar System and vice-versa. Astrophys J 690:210–215CrossRefGoogle Scholar
  36. Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R, Basic C, White D (2001) Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol 24:311–320PubMedCrossRefGoogle Scholar
  37. Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as model for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Giuliano Scalzi
    • 1
  • Laura Selbmann
    • 1
  • Laura Zucconi
    • 1
  • Elke Rabbow
    • 2
  • Gerda Horneck
    • 2
  • Patrizia Albertano
    • 3
  • Silvano Onofri
    • 1
  1. 1.Department of Ecological and Biological Sciences (DEB)University of TusciaViterboItaly
  2. 2.German Aerospace CentreInstitute of Aerospace MedicineKölnGermany
  3. 3.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations