Origins of Life and Evolution of Biospheres

, Volume 42, Issue 1, pp 3–17 | Cite as

Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

Prebiotic Chemistry

Abstract

Boron is probably a prebiotic element with special importance in the so-called “sugars world”. Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the “prebiotic metabolic cycle”. The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the “pre-RNA world”.

Keywords

Borates Boric acid Prebiotic Boron Essentiality Origins of life 

References

  1. Abbas SH, Schulze-Makuch D (2007) Synthesis of biologically important precursors on Titan. J Sci Expl 21(4):673–687Google Scholar
  2. Amin SA, Kupper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate gymnodinium catenatum. J Am Chem Soc 129:478–479PubMedCrossRefGoogle Scholar
  3. Bada JL (2004) How life began on earth: a status report. Earth Planet Sci Lett 226:1–15Google Scholar
  4. Bar-Even A, Shenhav B, Kafri R, Lancet D (2005) The lipid world: from catalytic and informational headgroups to micelle replication and evolution without nucleic acids. In: J. Seckbach, J. Chela-Flores, T. Owen, F. Raulin (eds) Life in the universe: from the miller experiment to the search for life on other worlds. Springer, Berlin, ISBN 1-4020-2371-5 (HB); ISBN 1-4020-2372-3 (e-book) pp 111Google Scholar
  5. Bassil E, Hu H, Brown PH (2004) Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol 136(2):3383–3395PubMedCrossRefGoogle Scholar
  6. Beer R (1976) Jupiter and the boron problem. Icarus 29(2):193–199CrossRefGoogle Scholar
  7. Benner SA, Kim HJ, Kim MJ, Ricardo A (2010) Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb Perspect Biol 2:a003467PubMedCrossRefGoogle Scholar
  8. Bergold A, Scouten WH (1983) Borate chromatography. In: Scouten WH (ed) Solid phase biochemistry. Wiley, New York, pp 149–187Google Scholar
  9. Bermejo MR, Rogero C, Salván CM, Esteban SO, Martín-Gago JA, Veintemillas-Verdaguer S (2009) Thermal wet decomposition of prussian blue: implications for prebiotic chemistry. Chem Biodivers 6(9):1309–1322CrossRefGoogle Scholar
  10. Bernstein MP, Sanford SA, Allamandola L, Gillette JS, Clemett SJ, Zare RN (1999) UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones and ethers. Science 283(5405):1135PubMedCrossRefGoogle Scholar
  11. Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500PubMedCrossRefGoogle Scholar
  12. Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912PubMedCrossRefGoogle Scholar
  13. Bonilla I, Garcia-Gonzalez M, Mateo P (1990) Boron requirement in cyanobacterial. Its possible role in the early evolution of photosynthetic organisms. Plant Physiol 94:1554–1560PubMedCrossRefGoogle Scholar
  14. Bonilla I, Mergold-Villaseñor C, Campos ME, Sánchez N, Pérez H, López L, Castrejón L, Sánchez F, Cassab GI (1997) The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyprolin-/proline-rich proteins. Plant Physiol 115:1329–1340PubMedCrossRefGoogle Scholar
  15. Brack A (2006) Clay minerals and the origin of life. In Handbook of clay science, edited by F. Bergaya, B.K. Theng, G. Lagaly, Amsterdam, Elsevier pp 379–391.Google Scholar
  16. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4(2):205–223CrossRefGoogle Scholar
  17. Burnett TJ, Peebles HC, Hageman JH (1980) Synthesis of a fluorescent boronic acid which reversibly binds to cell walls and a diboronic acid which agglutinates erythrocytes. Biochem Biophys Res Commun 96:157–162PubMedCrossRefGoogle Scholar
  18. Cairns-Smith AG (1966) The origin of life and the nature of the primitive gene. J Theor Biol 10(1):53–88PubMedCrossRefGoogle Scholar
  19. Cameron GW, Colgate SA, Grossman L (1973) Cosmic abundance of boron. Nature 243:204–207CrossRefGoogle Scholar
  20. Carrano CJ, Schellenberg S, Amin SA, Green DH, Küpper FC (2009) Boron and marine life: a new look at an enigmatic bioelement. Mar Biotechnol 11:431–440PubMedCrossRefGoogle Scholar
  21. Chapelle S, Verchere JF (1988) A boron-11 and carbon-13 NMR determination of the structures of borate complexes of pentoses and related sugars. Tetrahedron 44:4469–4482CrossRefGoogle Scholar
  22. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelezer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  23. Cleaves HJ, Chalmers JH (2004) Extremophiles may be irrelevant to the origin of life. Astrobiology 4(1):1–8PubMedCrossRefGoogle Scholar
  24. Clifford N, Matthews W, Minard RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss 133:393–401CrossRefGoogle Scholar
  25. Çolak S, Geyikoglu F, Keles ON, Türkez H, Topal A, Unal B (2011) The neuroprotective role of boric acid on aluminium chloride-induced neurotoxicity. Toxicol Ind Health, published online 4 May 2011, doi:10.1177/0748233710395349.
  26. Commeyras A, Collet H, Boiteau L, Taillades J, Vandenabeele-Trambouze O, Cottet H, Biron JP, Plasson R, Mion L, Lagrille O, Martin H, Selsis F, Dobrijevic M (2002) Prebiotic synthesis of sequential peptides on the hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polym Internat 51:661–665CrossRefGoogle Scholar
  27. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282:16729–16735PubMedCrossRefGoogle Scholar
  28. Cossetti C, Crestini C, Saladino R, Mauro ED (2010) Borate minerals and RNA stability. Polymers 2:211–228. doi:10.3390/polym2030211 CrossRefGoogle Scholar
  29. deGraaf RM, Visscher J, Schwartz AW (1997) Reactive phosphonic acids as prebiotic carriers of phosphorus. J Molec Evol 44:237–241CrossRefGoogle Scholar
  30. deDuve C (1991) Blueprint for a cell: the nature and origin of life. In: Neil Patterson Publishers, Burlington, North Carolina, pp 275Google Scholar
  31. Ehrenfreund P, Cami J (2010) Cosmic carbon chemistry: from the interstellar medium to the early earth. Cold Spring Harb Perspect Biol 2:2097CrossRefGoogle Scholar
  32. Etaix E, Orgel LE (1978) Phosphorylation of nucleosides in aqueous solution using trimetaphosphate: formation of nucleoside triphosphates. J Carbohydr Nucleos 5:91–110Google Scholar
  33. Ferris JP (1999) Prebiotic synthesis on minerals: bridging the prebiotic and RNA worlds. Biol Bull 196:311–314PubMedCrossRefGoogle Scholar
  34. Ferris JP (2006) Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philosoph Trans Royal Soc B 361:1777–1786CrossRefGoogle Scholar
  35. Fort DJ, Stover EL, Strong PL, Murray FJ, Keen CL (1999) Chronic feeding of a low boron diet affects reproduction and development in Xenopus laevis. Biol Tr Elem Res 129:2055–2060Google Scholar
  36. Gabel SA, London RE (2008) Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry. J Biol Inorg Chem 13(2):207–217PubMedCrossRefGoogle Scholar
  37. Gaillardet J, Lemarchand D, Göpel C, Manhès G (2001) Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostandards Newslett 25:67–75CrossRefGoogle Scholar
  38. Gedulin B, Arrhenius G (1994) Sources and geochemical evolution of RNA precursor molecules: the role of phosphate. In Early life on Earth, edited by S. Bengston, Nobel Symposium no. 84, New York, Columbia University Press, pp. 91–106.Google Scholar
  39. Gerrard W (1961) The organic chemistry of boron. Academic, New York, p 308Google Scholar
  40. Gilbert W (1986) The RNA World Nature 319:618Google Scholar
  41. Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Finderklee P, Baluska F (2001) Rapid response reactions of roots to boron deprivation. J Plant Nutr Soil Sci 161:173–181CrossRefGoogle Scholar
  42. Gonzales-Fontes A, Rexach J, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Beato VM, Maldonado JM, Camacho-Cristóbal JJ (2008) Is boron involved solely in structural roles in vascular plants? Plant Signal Behav 3(1):24–26CrossRefGoogle Scholar
  43. Green J (2009) Precambrian lunar volcanic protolife. Int J Molec Sci 10(6):2681–2721CrossRefGoogle Scholar
  44. Grew ES, Bada JL, Hazen RM (2011) Borate minerals and origin of the RNA world. Orig Life Evol Biosph 41:307–316. doi:10.1007/s11084-010-9233-y PubMedCrossRefGoogle Scholar
  45. Hall DG (2005) Structure, Properties, and Preparation Of Boronic Acid Derivatives. Overview of Their Reactions and Applications In Boronic Acids. Edited by Dennis G. Hall WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN 3-527-30991-8.Google Scholar
  46. Hollis JM, Lovas FJ, Jewell PR (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 540(2):L107–L110CrossRefGoogle Scholar
  47. Holm NG, Dumont M, Ivarsson M, Konn C (2006) Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis. Geochem Trans 7:7. doi:10.1186/1467-4866-7-7 PubMedCrossRefGoogle Scholar
  48. Holm NG, Baltscheffsky H (2011) Links between hydrothermal environments, pyrophosphate, Na+, and early evolution. Orig Life Evol Biosph, accepted 18 February 2011, doi:10.1007/s11084-011-9235-4.
  49. Hu H, Penn SG, Lebrilla CB et al (1997) Isolation and characterization of soluble boron complexes in higher plants. Plant Physiol 113:649–655PubMedCrossRefGoogle Scholar
  50. Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune function. J Trace Elem Exp Med 16:291–306CrossRefGoogle Scholar
  51. Ishii T, Matsunaga T (1996) Isolation and characterization of a boron–rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284:1–9CrossRefGoogle Scholar
  52. Ishii T, Matsunaga T (2001) Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57:969–974PubMedCrossRefGoogle Scholar
  53. Kakegawa T, Noda M, Nannri H (2002) Geochemical cycles of bio-essential elements on the early earth and their relationships to origin of life. Res Geol 52(2):83–89CrossRefGoogle Scholar
  54. Kanzaki T, Yoshida M, Nomura M, Kakihana H, Ozawa T (1979) Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-Jima. Jap Geochim Cosmochim Acta 43(11):1859–1863CrossRefGoogle Scholar
  55. Keefe AD, Miller SL (2010a) Was ferrocyanide a prebiotic reagent? Orig Life Evol Biosph 26(2):111–129CrossRefGoogle Scholar
  56. Keefe AD, Miller SL (2010b) Are polyphosphates or phosphate esters prebiotic reagents? J Molec Evol 41(6):693–702Google Scholar
  57. Kim HJ, Benner SA (2010) Comment on “The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates”. Science 329:902-a.Google Scholar
  58. Kirschvink JL, Weiss BP (2001) Mars, panspermia, and the origin of life: where did it all begin? Palaeontol Electron 4(2):8Google Scholar
  59. Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020PubMedGoogle Scholar
  60. Kolb M, Zhu W (2004) Complexes of ribose with silicates, borates, and calcium: implications to astrobiology. Proc SPIE 5555:70–77CrossRefGoogle Scholar
  61. Kolitz M, Cohen-Arazi N, Hagag I, Katzhendler J, Domb AJ (2009) Biodegradable polyesters derived from amino acids. Macromolecules 42:4520–4530CrossRefGoogle Scholar
  62. Kristof P, Hannes R, Bernd R (2005) Prebiotic chemistry: the amino acid and peptide world. Curr Org Chem 9(12):1107–1114CrossRefGoogle Scholar
  63. Krogh-Moe J (1963) Energy and length of the boron-oxygen bond. Acta Chem Scandinavia 17:843–864CrossRefGoogle Scholar
  64. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010a) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 237:984–986CrossRefGoogle Scholar
  65. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010b) Response to comment on “The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates”. Science 329:902-b.Google Scholar
  66. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160PubMedCrossRefGoogle Scholar
  67. Li Q, Ricardo A, Benner SA, Winefordner JD, Powell DH (2005) Desorption/ionization on porous silicon mass spectrometry studies on pentose-borate complexes. Anal Chem 77:4503PubMedCrossRefGoogle Scholar
  68. Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry. Astrophysics and space science proceedings. Springer, New York, pp 379–417CrossRefGoogle Scholar
  69. Loomis WD, Durst RM (1992) Chemistry and biology of boron. Biofactors 3:229–239PubMedGoogle Scholar
  70. Martin AR, Mohanan K, Luvino D, Floquet N, Baraguey C, Smietana M, Vasseur JJ (2009) Expanding the borononucleotide family: synthesis of borono-analogues of dCMP, dGMP and dAMP. Org Biomol Chem 7:4369–4377PubMedCrossRefGoogle Scholar
  71. Martin AR, Barvik I, Luvino D, Smietana M, Vasseur JJ (2011) Dynamic and Programmable DNA-Templated Boronic Ester Formation. Angew Chem Int Ed, article first published online: 28 MAR 2011 doi:10.1002/anie.201007170.
  72. McClendon JH (1976) Elemental abundance as a factor in the origins of mineral nutrient requirements. J Mol Evol 8:175–195PubMedCrossRefGoogle Scholar
  73. McDonald GD, Storrie-Lombard MC (2010) Biochemical constraints in a protobiotic earth devoid of basic amino acids: the “BAA(-) World”. Astrobiology 10(10):989–1000PubMedCrossRefGoogle Scholar
  74. McKay CP, Porco CC, Altheide T, Davis WL, Kral TA (2008) The possible origin and persistence of life on enceladus and detection of biomarkers in the plume. Astrobiology 8(5):909–19PubMedCrossRefGoogle Scholar
  75. Mellersh AR, Smith PM (2010) The alkaline world and the origin of life. J Cosmol 10:3230–3242Google Scholar
  76. Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108PubMedCrossRefGoogle Scholar
  77. Morchio R, Traverso S (2005) Prebiotic phosphate: a problem insoluble in water? Riv Biol 98(1):18–23PubMedGoogle Scholar
  78. Mulkidjanian AY, Galperin MY (2009) On the origin of life in the Zinc world. Validation of the hypothesis on the photosynthesizing zinc sulphide edifices as cradles of life on Earth. Biol Direct 4:27PubMedCrossRefGoogle Scholar
  79. Nielsen FH (1996) Evidence for the nutrition essentiality of boron. J Trace Elem Exp Med 9:215–229CrossRefGoogle Scholar
  80. Nielsen PE (2007) Peptide nucleic acids and the origin of life. Chem Biodivers 4(9):1996–2002PubMedCrossRefGoogle Scholar
  81. Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K (2003) Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J Am Chem Soc 125:3493–3502PubMedCrossRefGoogle Scholar
  82. Palme H and Jones A (2005) Solar system abundances of the elements. In: Treatise od Geochemistry, Chap.1.03, vol.1:41-61, Holland HD and Turekian KK, edsGoogle Scholar
  83. Park M, Li Q, Shcheynikov N, Muallen S, Zeng W (2004) NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16(3):331–341PubMedCrossRefGoogle Scholar
  84. Park M, Li Q, Shcheynikov N, Muallen S, Zeng W (2005) Borate transport and cell growth and proliferation: not only in plants. Cell Cycle 4(1):24–26PubMedCrossRefGoogle Scholar
  85. Pelmore H, Symons MCR (1986) NMR studies of complexes formed by D-fructose and borate ions in aqueous solution. Carbohydr Res 155:206–211CrossRefGoogle Scholar
  86. Petasis NA (2007) Expanding roles for organoboron compounds versatile and valuable molecules for synthetic biological and medicinal chemistry. Aust J Chem 60:795–798CrossRefGoogle Scholar
  87. Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193:1–1CrossRefGoogle Scholar
  88. Prieur BE (2001) Étude de l'activité prébiotique potentielle de l'acide borique. C R Acad Sci Ser IIC Chem 4:667–670Google Scholar
  89. Raymond F, Gesteland TR, Cech JF, Atkins C (2005) The RNA World, In Cold Spring Harbor Monograph Series 43, third edition, Spring Harbor Laboratory Press, pp. 768.Google Scholar
  90. Raven JA (1980) Short and long distance transport of boric acid in plants. New Phytol 84:231–249CrossRefGoogle Scholar
  91. Redondo-Nieto M, Reguera M, Bonilla I, Bolaños L (2008) Boron dependent membrane glycoproteins in symbiosome development and nodule organogenesis. A model for a common role of boron in organogenesis. Plant Signal Behav 3(5):298–30PubMedCrossRefGoogle Scholar
  92. Rezanka T, Sigler K (2008) Biologically active compounds of semi-metals. Phytochemistry 69:585–606PubMedCrossRefGoogle Scholar
  93. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196PubMedCrossRefGoogle Scholar
  94. Riggs JA, Litchfield RK, Smith BD (1996) Molecular recognition and membrane transport with mixed-ligand borates. J Org Chem 6:1148–1150CrossRefGoogle Scholar
  95. Rossa DS (2008) Quantitative evaluation of the iron-sulfur world and its relevance to life’s origins. Astrobiology 8(2):267–273CrossRefGoogle Scholar
  96. Rowe RI, Eckert CD (1999) Boron is required for zebra¢sh embryogenesis. J Exp Biol 202:1649–1654PubMedGoogle Scholar
  97. Saladino R, Barontini M, Cossetti C, Di Mauro E, Crestini C (2011) The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide. Orig Life Evol Biosph 41:317–330. doi:10.1007/s11084-011-9236-3 PubMedCrossRefGoogle Scholar
  98. Schaeffer R (1964) In Progress in Boron Chemistry, edited by H. Steinberg, A. L. McCloskey, MacMillan, New York, pp. 453-459.Google Scholar
  99. Schulze-Makuch D, Irwin LN (2008) Life in the universe. In Expectations and constraints, 2 ed. Springer, Verlag, pp 251Google Scholar
  100. Schwartz AW (2006) Phosphorus in prebiotic chemistry Phil. Trans R Soc B 361:1743–1749. doi:10.1098/rstb.2006.1901 CrossRefGoogle Scholar
  101. Scorei R, Cimpoiasu VM (2006) Boron enhances thermostability of carbohydrates. Orig Life Evol Biosph 36(1):1–11PubMedCrossRefGoogle Scholar
  102. Segre D, Eli DB, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145PubMedCrossRefGoogle Scholar
  103. Shakir A, Humaira F, Ram P, Mohammad N, Rzutraya I, Yadavc S, Ahmadd F (2010) Boron stabilizes peroxide mediated changes in the structure of heme proteins. Int J Biol Macromol 47:109–115CrossRefGoogle Scholar
  104. Shaw DM (1995) Lunar behaviour of boron contrasted with the terrestrial boron cycle. Meteoritics 30(2):199–208Google Scholar
  105. Silva JJR, Frausto DA, Paton R, Williams J (2001) The biological chemistry of the elements: the inorganic chemistry of life. In Oxford University Press, 2-edition, New York, pp. 575.Google Scholar
  106. Sleep NH (2010) The Hadean-Archaean Environment Cold Spring Harb Perspect Biol. 2(6):a002527.Google Scholar
  107. Smith BD, Gardiner SJ, Munro TA, Paugam MF, Riggs JA (1998) Facilitated transport of carbohydrates, catecholamines, and amino acids through liquid and plasticized organic membranes. J Inclus Phenom Mol 32:121–131CrossRefGoogle Scholar
  108. Spivak-Birndorf LJ, Wadhwa M, Williams LB (2008a) The Boron Isotopic Composition of Nakhla Iddingsite. In 39th Lunar and Planetary Science Conference, Lunar and Planetary Science XXXIX, League City, Texas, LPI Contribution No. 1391, pp. 1904.Google Scholar
  109. Spivak-Birndorf LJ, Wadhwa M, Williams LB (2008b) Boron isotopes in the nakhlites: Implications for crustal fluids on Mars, Goldschmidt Conference Abstracts, A889.Google Scholar
  110. Sponer JE, Sumpter BG, Leszczynski J, Sponer J, Fuentes-Cabrera M (2008) Theoretical study on the factors controlling the stability of the borate complexes of ribose, arabinose, lyxose, and xylose. Chemistry 14:9990–9998PubMedCrossRefGoogle Scholar
  111. Springsteen G, Wang B (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron 58:5291–5300CrossRefGoogle Scholar
  112. Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126(31):9578–9583PubMedCrossRefGoogle Scholar
  113. Strasdeit H (2010) Chemical evolution and early earth’s and mars’ environmental conditions. Palaeodivers 3:107–116Google Scholar
  114. Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA 102:12276–12281PubMedCrossRefGoogle Scholar
  115. Tanaka M, Fujiwara T (2007) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Archives-Eur J Physiol 456:671–677CrossRefGoogle Scholar
  116. Verstraeten SV, Lanoue L, Keen CL, Oteiza PI (2005) Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties. Arch Biochem Biophys 438(1):103–10PubMedCrossRefGoogle Scholar
  117. Voges D, Zwickl P, Baumeister W (1999) The 26s proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068PubMedCrossRefGoogle Scholar
  118. Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289(5483):1307–1308PubMedCrossRefGoogle Scholar
  119. Weber AL (2007) The sugar model: autocatalytic activity of the triose-ammonia. Orig Life Evol Biosph 37:105–111PubMedCrossRefGoogle Scholar
  120. Weber AL (2008) Sugar-driven prebiotic synthesis of 3,5(6)-dimethylpyrazin-2-one: A possible nucleobase of a primitive replication process. Orig Life Evol Biosph 38:279–292PubMedCrossRefGoogle Scholar
  121. Weser U (1967) Chemistry and structure of some borate polyol compounds of biochemical interest. In: Jorgensen C, Neilands J, Nyholm R, Reinen D, Williams R (eds) Structure and bonding, vol 2. Springer, New York, pp 160–180CrossRefGoogle Scholar
  122. Weser and Kaup (2002) Borate, an Effective Mummification Agent in Pharaonic Egypt, Z. Naturforsch. 57b:819-822.Google Scholar
  123. Westmark PR, Gardiner SJ, Smith BD (1996) Selective monosaccharide transport through lipid bilayers using boronic acid carriers. J Am Chem Soc 118:11093–11100CrossRefGoogle Scholar
  124. Westmark PR, Smith BD (1996) Boronic acids facilitate the transport of ribonucleosides through lipid bilayers. J Pharm Sci 85(3)Google Scholar
  125. Wolkenstein K, Gross JH, Falk H (2010) Boron-containing organic pigments from a Jurassic red alga. PNAS 107(45):19374–19378. doi:10.1073/pnas.1007973107 PubMedCrossRefGoogle Scholar
  126. Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519PubMedCrossRefGoogle Scholar
  127. York WS, Darvill AG, McNeil M, Albersheim P (1985) Structure of plant-cell walls: 16. 3-Deoxy-D-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan-II, a pectic polysaccharide in the primary-cell walls of plants. Carbohyd Res 138:109–126CrossRefGoogle Scholar
  128. Zittle C (1951) Reaction of borate with substances of biological interest. In: Advances in Enzymology, edited by F. Ford, New York, Interscience Publishers, 12:493–527.Google Scholar
  129. Zubay G (1988) Biochemistry, 2nd edn. Macmillan, New YorkGoogle Scholar
  130. Zubay G, Mui T (2001) Prebiotic synthesis of nucleotides. Orig Life Evol Biosph 31:87–102PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of CraiovaCraiovaRomania

Personalised recommendations