Origins of Life and Evolution of Biospheres

, Volume 41, Issue 6, pp 503–522 | Cite as

Pathways to Earth-Like Atmospheres

Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres
  • Helmut LammerEmail author
  • K. G. Kislyakova
  • P. Odert
  • M. Leitzinger
  • R. Schwarz
  • E. Pilat-Lohinger
  • Yu. N. Kulikov
  • M. L. Khodachenko
  • M. Güdel
  • A. Hanslmeier


We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star’s EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.


Atmosphere formation Young stars Early Earth Habitability 



H. Lammer, K. G. Kislyakova and Yu. N. Kulikov thank the Helmholtz Alliance project “Planetary Evolution and Life“ and the joined Austrian FWF and Russian Fund for Basic Research (RFBR) projects I199-N16/09-02-91002-ANF_a. M. Güdel, M. L. Khodachenko, H. Lammer and E. Pilat-Lohinger acknowledge the support by the FWF NFN project S116 “Wege zur Habitabilität: Scheiben zu Sternen, Planeten & Leben”, and the FWF NFN subprojects, S116 604-N16, S116 608-N16, S116 606-N16, S116607-N16. E. Pilat-Lohinger was supported by the FWF project P22603. A. Hanslmeier, P. Odert and M. Leitzinger acknowledge the FWF project P22950-N16. R. Schwarz acknowledges the support by the Austrian FWF project P 23810-N16. K. G. Kislyakova also acknowledges the RFBR project 08-02-00119_a, the NK-21P project of the Russian Education Ministry. The authors also acknowledge support from the EU FP7 project IMPEx (No.262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science WG4 and WG5. Finally, the authors acknowledge a support from the International Space Science Institute (ISSI) in Bern, and the ISSI team “Characterizing stellar- and exoplanetary environments”.


  1. Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter 100:27–39CrossRefGoogle Scholar
  2. Ahrens TJ (1993) Impact erosion of terrestrial planetary atmospheres. Annu Rev Earth Planet Sci 21:525–555CrossRefGoogle Scholar
  3. Albarède F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus and Moon. CR Geosci 339:917–927CrossRefGoogle Scholar
  4. Alibert Y, Broeg C, Benz W, Wuchterl G, Grasset O, Sotin C, Eiroa C, Henning T, Herbst T, Kaltenegger L, Léger A, Liseau R, Lammer H, Beichman C, Danchi W, Fridlund M, Lunine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Selsis F, Schneider J, Stam D, Tinetti G, White GJ (2007) Origin and formation of planetary systems. Astrobiology 10:19–32CrossRefGoogle Scholar
  5. Allègre CJ, Manhès G, Göpel C (1995) The age of the Earth. Geochim Cosmochim Acta 59:1445–1456CrossRefGoogle Scholar
  6. Batalha NM, Borucki WJ, Bryson ST, Buchhave LA, Caldwell DA, and the Kepler team (2011) Kepler’s first rocky planet: Kepler-10b. Astrophys J 729, article id. 27Google Scholar
  7. Beust H, Bonfils X, Delfosse X, Udry S (2008) Dynamical evolution of the Gliese 581 planetary system. Astron Astrophys 479:277–282CrossRefGoogle Scholar
  8. Borucki B, Koch DG, Basri G, Batalha N, Brown TM, and the Kepler team (2011) Characteristic of Kepler planetary candidates based on the first data set. Astrophys J 728:117 (20 pp)CrossRefGoogle Scholar
  9. Chamberlain JW (1963) Planetary coronae and atmospheric evaporation. Planet Space Sci 11:901–996CrossRefGoogle Scholar
  10. Chambers JE, Wetherill GW (1998) Making the terrestrial planets: n-body integrations of planetary embryos in three dimensions. Icarus 136:304–327CrossRefGoogle Scholar
  11. Charbonneau D, Berta ZK, Irwin J, Burke CJ, Nutzman P, Buchhave LA, Lovis C, Bonfils X, Latham DW, Udry S, Murray-Clay RA, Holman MJ, Falco EE, Winn JN, Queloz D, Pepe F, Mayor M, Delfose X, Forveille T (2009) A super-Earth transiting a nearby low-mass star. Nature 462:891–894PubMedCrossRefGoogle Scholar
  12. Chassefière E (1996a) Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J Geophys Res 101:26039–26056CrossRefGoogle Scholar
  13. Chassefière E (1996b) Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124:537–552CrossRefGoogle Scholar
  14. Chen GQ, Ahrens TJ (1997) Erosion of terrestrial planet atmosphere by surface motion after a large impact. Phys Earth Planet Inter 100:21–26CrossRefGoogle Scholar
  15. Clarke WB, Beg, MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220CrossRefGoogle Scholar
  16. Craig H, Lupton JE (1976) Primoridial neon, helium, and hydrogen in oceanic basalts. Earth Planet Sci Lett 32:369–385CrossRefGoogle Scholar
  17. Dauphas N (2003) The dual origin of the terrestrial atmosphere. Icarus 165:326–339CrossRefGoogle Scholar
  18. Ekenbäck A, Holmström M, Wurz P, Grießmeier J-M, Lammer H, Selsis F, Penz T (2010) Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. Astrophys J 709:670–679CrossRefGoogle Scholar
  19. Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191CrossRefGoogle Scholar
  20. Elkins-Tanton LT (2011) Formation of water ocean on rocky planets. Astrophys Space Sci 332:359–364CrossRefGoogle Scholar
  21. Erkaev NV, Kulikov YuN, Lammer H, Selsis F, Langmayr D, Jaritz GF, Biernat HK (2007) Roche lobe effects on the atmospheric loss of “Hot Jupiters”. Astron Astrophys 472:329–334CrossRefGoogle Scholar
  22. Genda H, Abe Y (2003) Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164:149–162CrossRefGoogle Scholar
  23. Genda H, Ikoma M (2008) Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52CrossRefGoogle Scholar
  24. Grott M, Morschhauser A, Breuer D, Hauber E (2011) Volcanic outgassing of CO2 and H2O on Mars. Earth Planet Sci Lett 308:391–400CrossRefGoogle Scholar
  25. Gould A, Udalski A, An D, Bennett DP, Zhou A-Y, Dong S, Rattenbury NJ, Gaudi, BS, Yock PCM, Bond IA, Christie GW, Horne K, Anderson J, Stanek KZ, DePoy DL, Han C, McCormick J, Park B-G, Pogge RW, Poindexter SD, Soszyński I, Szymański MK, Kubiak M, Pietrzyński G, Szewczyk O, Wyrzykowski L, Ulaczyk K, Paczyński B, Bramich DM, Snodgrass C, Steele IA, Burgdorf MJ, Bode MF, Botzler CS, Mao S, Swaving SC (2006) Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. Astrophys J 644:L37–L40CrossRefGoogle Scholar
  26. Güdel M, Guinan EF, Skinner SL (1997) The X-ray sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys J 483:947–960CrossRefGoogle Scholar
  27. Güdel M (2007) The sun in time: activity and environment. Living Rev Solar Phys 4(3):1–100Google Scholar
  28. Halliday AN (2003) The origin of the earliest history of the Earth. Treatise Geochem 1:509–557CrossRefGoogle Scholar
  29. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–514CrossRefGoogle Scholar
  30. Hayashi C, Nakazawa K, Mizuno H (1979) Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet Sci Lett 43:22–28CrossRefGoogle Scholar
  31. Holmström M, Ekenbäck A, Selsis F, Penz T, Lammer H, Wurz P (2008) Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451:970–972PubMedCrossRefGoogle Scholar
  32. Hunten DM (1993) Atmospheric evolution of the terrestrial planets. Science 259:915–920Google Scholar
  33. Hunten DM, Pepin RO, Walker JCG (1987) Mass fractionation in hydrodynamic escape. Icarus 69:532–549CrossRefGoogle Scholar
  34. Jarosewich E (1990) Chemical analysis of meteorites: a combination of stony and iron meteorite analyses. Meteoritics 25:323–337Google Scholar
  35. Kasting JF (1995) O2 concentrations in dense primitive atmospheres: commentary. Planet Space Sci 43:11–13PubMedCrossRefGoogle Scholar
  36. Kasting JF, Pollack JB (1983) Loss of water from Venus I. Hydrodynamic escape of hydrogen. Icarus 53:479–508CrossRefGoogle Scholar
  37. Kasting JF, Pollack JB, Crisp D (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos Chem 1:403–428PubMedCrossRefGoogle Scholar
  38. Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108CrossRefGoogle Scholar
  39. Kokubo E, Ida S (1998) Oligarchic growth of protoplanets. Icarus 131:171–178CrossRefGoogle Scholar
  40. Kulikov YuN, Lammer H, Lichtenegger HIM, Terada N, Ribas I, Kolb C, Langmayr D, Lundin R, Guinan EF, Barabash S, Biernat HK (2006) Atmospheric and water loss from early Venus. Planet Space Sci 54:1425–1444CrossRefGoogle Scholar
  41. Kusaka T, Nakano T, Hayashi C (1970) Growth of solid particles in the primordial solar nebula. Prog Theor Phys 44:1580–1595CrossRefGoogle Scholar
  42. Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139:399–436CrossRefGoogle Scholar
  43. Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Grießmeier J-M, Stangl G, Cockell CS, Kulikov YuN, Grenfell L, Rauer H (2009a) What makes a planet habitable? Astron Astrophys 17:181–249CrossRefGoogle Scholar
  44. Lammer H, Odert P, Leitzinger M, Khodachenko ML, Panchenko M, Kulikov YuN, Zhang TL, Lichtenegger HIM, Erkaev NV, Wuchterl G, Micela G, Penz T, Biernat HK, Weingrill J, Steller M., Ottacher O, Hasiba J, Hanslmeier A (2009b) Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron Astrophys 506:399–410CrossRefGoogle Scholar
  45. Lammer H, Kislyakova KG, Holmström M, Khodachenko ML, Grießmeier J-M (2011a) Hydrogen ENA-cloud observation and modeling as a tool to study star-exoplanet interaction. Astrophys Space Sci 335:9–23CrossRefGoogle Scholar
  46. Lammer H, Eybl V, Kislyakova KG, Weingrill J, Holmström M, Khodchenko ML, Kulikov YuN, Reiners A, Leitzinger M, Odert P, Xian Grüß M, Dorner B, Güdel M, Hanslmeier A (2011b) UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. Astrophys Space Sci 335:39–50CrossRefGoogle Scholar
  47. Léger A, Rouan, D, Schneider J, Barge P, Fridlund F, and the CoRoT team (2009) Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first super-Earth with measured radius. Astron Astrophys 506:287–302CrossRefGoogle Scholar
  48. Leinhardt ZM, Richardson DC (2005) Planetesimals to protoplanets. I. Effect of fragmentation on terrestrial planet formation. Astrophys J 625:427–440CrossRefGoogle Scholar
  49. Lichtenegger HIM, Lammer H, Grießmeier J-M, Kulikov YuN, von Paris P, Hausleitner W, Krauss S, Rauer H (2010) Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch. Icarus 210:1–7CrossRefGoogle Scholar
  50. Leitzinger M, Odert P, Kulikov YuN, Lammer H, Wuchterl G, Penz T, Guarcello MG, Micela G, Khodachenko ML, Weingrill J, Hanslmeier A, Biernat HK, Schneider J (2011) Could CoRoT-7b and Kepler-10b be remnants f evaporated gas or ice giants? Planet Space Sci 59:1472–1481PubMedCrossRefGoogle Scholar
  51. Lissauer JJ, and the Kepler team (2011) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58PubMedCrossRefGoogle Scholar
  52. Liu L-G (2004) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184CrossRefGoogle Scholar
  53. Lovis C, Mayor M, Pepe F, Alibert Y, Benz W, Bouchy F, Correia ACM, Laskar J, Mordasini C, Queloz D, Santos NC, Udry S, Bertaux J-L, Sivan J-P (2006) An extrasolar planetary system with three Neptune-mass planets. Nature 441:305–309PubMedCrossRefGoogle Scholar
  54. Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci Rev 129:245–278CrossRefGoogle Scholar
  55. Lunine JI, O’Brien DP, Raymond SN, Morbidelli A, Qinn T, Graps AL (2011) Dynamical models of terrestrial planet formation. Adv Sci Lett 4:325–338CrossRefGoogle Scholar
  56. Mamyrin BA, Tolstikhin IN, Anufriev GS, Kemensky IL (1969) Anomalous isotopic composition of helium in volcanic gases. Dokl Akad Nauk SSR 184:1197–1199Google Scholar
  57. Mandell AM, Raymond SN, Sigurdsonn St (2007) Formation of Earth-like planets during and after giant planet migration. Astrophys J 660:823–844CrossRefGoogle Scholar
  58. Matsui T, Abe Y (1986) Impact-induced atmospheres and oceans on Earth and Venus. Nature 322:526–528CrossRefGoogle Scholar
  59. Mizuno H, Nakazawa K, Hayashi C (1980) Dissolution of the primordial rare gases into the molten Earth’ material. Earth Planet Sci Lett 50:202–210CrossRefGoogle Scholar
  60. Morbidelli A, Chambers J, Lunine JI, Petit JM, Robert F, Valsecchi GB, Cyr K (2000) Source regions and timescales for the delivery of water to Earth. Meteorit Planet Sci 35:1309–1320CrossRefGoogle Scholar
  61. Moreira M, Breddam K, Curtice J, Kurz MD (2001) Solar neon in the icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23CrossRefGoogle Scholar
  62. Murray-Clay RA, Chiang EI, Murray N (2009) Atmospheric escape from “Hot Jupiters”. Astrophys J 693:23–44CrossRefGoogle Scholar
  63. Najita JR, Strom SE, Muzerolle J (2007) Demographics of transition objects. Mon Not R Astron Soc 378:369–378CrossRefGoogle Scholar
  64. Nakagawa K, Nakazawa, K Hayashi C (1981) Growth and sedimentation of dust grains in the primordial solar nebula. Icarus 45:517–528CrossRefGoogle Scholar
  65. Öpik EJ (1963) Selective escape of gases. Geophys J R Astron Soc 7:490–509CrossRefGoogle Scholar
  66. Ozima M, Podosek FA (1999) Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J Geophys Res 104:25493–25499CrossRefGoogle Scholar
  67. Penz T, Erkaev NV, Kulikov YuN Langmayr D, Lammer H, Micela G, Cecchi-Pestellinig C, Biernat HK, Selsis F, Barge P, Deleuil M, Léger A (2008) Mass loss from “Hot Jupiters”—implications for CoRoT discoveries, part II: long time thermal atmospheric evaporation modeling. Planet Space Sci 56:1260–1272CrossRefGoogle Scholar
  68. Pepin RO (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79CrossRefGoogle Scholar
  69. Pepin RO (2000) On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci Rev 92:371–395CrossRefGoogle Scholar
  70. Porcelli D, Halliday AN (2001) The possibility of the core as a source of mantle helium. Earth Planet Sci Lett 192:45–56CrossRefGoogle Scholar
  71. Quingzhu Y, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albaréde F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952CrossRefGoogle Scholar
  72. Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17CrossRefGoogle Scholar
  73. Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700Å). Astrophys J 622:680–694CrossRefGoogle Scholar
  74. Rivera EJ, Lissauer JJ, Butler RP, Marcy GW, Vogt SS, Fischer DA, Brown TM, Laughlin GH, Gregory W (2005) A ~7.5M Earth planet orbiting the nearby star, GJ 876. Astrophys J 634:625–640CrossRefGoogle Scholar
  75. Rubey WW (1951) Geological history of seawater. Bull Geol Soc Am 62:1111–1148CrossRefGoogle Scholar
  76. Sasaki S, Nakazawa K (1988) Metal-silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean. J Geophys Res 91:9231–9238CrossRefGoogle Scholar
  77. Schaefer L, Fegley Jr B (2009) Chemistry of silicate atmospheres of evaporating super-Earths. Astrophys J 703:L113–L117CrossRefGoogle Scholar
  78. Shustov B, Sachov M, Gomez de Castro AI, Ana I, Pagano I (2009) WSO-UV ultraviolet mission for the next decade. Astrophys Space Sci 320:187–190CrossRefGoogle Scholar
  79. Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Origin of the Earth and the Moon. University of Arizona Press, Tucson, pp 323–338Google Scholar
  80. Taylor SR (1992) Solar system evolution: a new perspective. Cambridge University Press, New YorkGoogle Scholar
  81. Tian F, Toon OB, Pavlov AA (2005) De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017PubMedCrossRefGoogle Scholar
  82. Tian F, Kasting JF, Liu H, Roble RG (2008) Hydrodynamic planetary thermosphere model: 1. The response of the Earths thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J Geophys Res 113. doi: 10.1029/2007JE002946 Google Scholar
  83. Tian F (2009) Thermal escape from super Earth atmospheres in the habitable zones of M Stars. Astrophys J 703:905–909CrossRefGoogle Scholar
  84. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209PubMedCrossRefGoogle Scholar
  85. Trigo-Rodriguez JM, Martin-Torres FJ (2012) Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth. Planet Space Sci 60:3–9CrossRefGoogle Scholar
  86. Urey HC (1966) The capture hypothesis of the origin of the moon. In: Marsden BG, Cameron AGW (eds) The Earth–Moon system. Plenum, New York, pp 210–212Google Scholar
  87. Valley AM, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354CrossRefGoogle Scholar
  88. Watson AJ, Donahue TM, Walker JCG (1981) The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48:150–166CrossRefGoogle Scholar
  89. Wetherill GW (1986) Accumulation of terrestrial planets and implications concerning lunar origin. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the moon. Lunar and Planet Institute, Houston, pp 519–550Google Scholar
  90. Zahnle KJ, Kasting JF (1986) Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 66:462–480CrossRefGoogle Scholar
  91. Zahnle KJ, Walker JCG (1982) The evolution of solar ultraviolet luminosity. Rev Geophys 20:280–292CrossRefGoogle Scholar
  92. Zahnle KJ, Kasting JF, Pollack JB (1988) Evolution of a steam atmosphere during Earth’s accreation. Icarus 74:62–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Helmut Lammer
    • 1
    Email author
  • K. G. Kislyakova
    • 2
    • 3
  • P. Odert
    • 3
  • M. Leitzinger
    • 3
  • R. Schwarz
    • 4
  • E. Pilat-Lohinger
    • 4
  • Yu. N. Kulikov
    • 5
  • M. L. Khodachenko
    • 1
  • M. Güdel
    • 4
  • A. Hanslmeier
    • 3
  1. 1.Austrian Academy of SciencesSpace Research InstituteGrazAustria
  2. 2.N.I. Lobachevsky State University of Nizhnij NovgorodNizhnij NovgorodRussian Federation
  3. 3.Institute for Physics/IGAMUniversity of GrazGrazAustria
  4. 4.Institute for AstronomyUniversity of ViennaTürkenschanzstr. 17Austria
  5. 5.Polar Geophysical InstituteRussian Academy of SciencesMurmanskRussian Federation

Personalised recommendations