Advertisement

Catalytic effects of Murchison Material: Prebiotic Synthesis and Degradation of RNA Precursors

  • Raffaele Saladino
  • Claudia Crestini
  • Cristina Cossetti
  • Ernesto Di Mauro
  • David Deamer
Prebiotic Chemistry

Abstract

Mineral components of the Murchison meteorite were investigated in terms of potential catalytic effects on synthetic and hydrolytic reactions related to ribonucleic acid. We found that the mineral surfaces catalyzed condensation reactions of formamide to form carboxylic acids, amino acids, nucleobases and sugar precursors. These results suggest that formamide condensation reactions in the parent bodies of carbonaceous meteorites could give rise to multiple organic compounds thought to be required for the emergence of life. Previous studies have demonstrated similar catalytic effects for mineral assemblies likely to have been present in the early Earth environment. The minerals had little or no effect in promoting hydrolysis of RNA (24mer of polyadenylic acid) at 80°C over a pH range from 4.2 to 9.3. RNA was most stable in the neutral pH range, with a half-life ~5 h, but at higher and lower pH ranges the half-life decreased to ~1 h. These results suggest that if RNA was somehow incorporated into a primitive form of RNA-based thermophilic life, either it must be protected from random hydrolytic events, or the rate of synthesis must exceed the rate of hydrolysis.

Keywords

Prebiotic chemistry Murchison meteorite Formamide Catalysis 

Notes

Acknowledgements

ASI-INAF n. I/015/07/0 “Esplorazione del Sistema Solare” supported the research described in this paper.

References

  1. Aizpurua JM, Palomo C (1983) Reagents and synthetic methods 30. Practical and improved method for formylating amino compounds by means of formic acid-dimethylformamide system. Synth Commun 13:745–752CrossRefGoogle Scholar
  2. Bibillo A, Figlerowicz M, Kierzek R (1999) The non-enzymatic hydrolysis of oligoribonucleotides. VI. The role of biogenic polyamines. Nucleic Acids Res 27:3931–3937PubMedCrossRefGoogle Scholar
  3. Bockelée-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gérard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) New molecules found in Comet C/1995 O1 (Hale–Bopp). Investigating the link between cometary and interstellar material. Astron Astrophys 353:1101–1114Google Scholar
  4. Bredereck H, Ulmer H, Waldman H (1956) Synthesis in the purine series VII. Purine from formamide. Methylation and bromination of purine. Chem Ber 89:12–18CrossRefGoogle Scholar
  5. Bredereck H, Gompper R, Schuh HGV, Theilig G (1959) Neuere Methoden der preparativen organischen Chemie II. 16. Synthesen mit ureamiden, ins besondere mit formamid. Angew Chem 71:753CrossRefGoogle Scholar
  6. Campins H, Hargrove K, Pinilla-Alonso N, Howell ES, Kelley MS, Licandro J, Mothé-Diniz T, Fernández J, Ziffer J (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464:1320–1321PubMedCrossRefGoogle Scholar
  7. Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539PubMedCrossRefGoogle Scholar
  8. Cheng LK, Unrau PJ (2010) Closing the circle: replicating RNA with RNA. In: Deamer D, Szostak J (eds) Origins of Life. Cold Spring Harbor Press, New YorkGoogle Scholar
  9. Ciciriello F, Costanzo G, Pino S, Crestini C, Saladino R, Di Mauro E (2008) Molecular complexity favours the evolution of ribopolymers. Biochemistry 47:2732–2742PubMedCrossRefGoogle Scholar
  10. Cody GD, Scott JH (2007) The Roots of Metabolism. In Sullivan W, Baross J, (eds) Planets & Life. Cambridge University Press, 174–186.Google Scholar
  11. Cossetti C, Crestini C, Saladino R, Di Mauro E (2010) Borate minerals and RNA stability. Polymers 2:211–228CrossRefGoogle Scholar
  12. Costanzo G, Pino S, Ciciriello F, Di Mauro E (2009) Generation of long RNA chains in water. J Biol Chem 284:33206–33216PubMedCrossRefGoogle Scholar
  13. Ehrenfreund P, Cami J (2010) Cosmic carbon chemistry: From the interstellar medium to the early Earth. In: Deamer D, Szostak J (eds) Origins of Life. Cold Spring Harbor, New YorkGoogle Scholar
  14. Eschenmoser A (2007) Reactions of the HCN-tetramer with Aldehydes. Chem Biodivers 4:554–573PubMedCrossRefGoogle Scholar
  15. Ferris JP (2006) Montmorillonite catalyzed formation of RNA oligomers: the possible role of catalysis in the origins of life. Phil Trans R Soc Lond B Biol Sci 361:1777–1786CrossRefGoogle Scholar
  16. Fuchs LH, Olsen E, Jensen KJ (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite$ Smithsonian contributions to the earth sciences vol. 10. Smithsonian Institution Press, Washington, pp 1–37Google Scholar
  17. Ghosh A, McSween HY (1996) An extended thermal history (100 MA Long) for asteroid 4 Vesta based on radionuclide and collisional heating. Lunar Planet Sci 27:407–8Google Scholar
  18. Gilbert W (1986) The RNA World. Nature 319:618CrossRefGoogle Scholar
  19. Gupta D, Huelsekopf M, Cerdà MM, Ludwig R, Lippert B (2004) Complex Formation of Isocytosine Tautomers with PdII and PtII. Inorg Chem 43:3386–3393PubMedCrossRefGoogle Scholar
  20. Holms WH (1987) Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli. Biochem Soc Symp 54:17–31PubMedGoogle Scholar
  21. Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314:630–632PubMedCrossRefGoogle Scholar
  22. Ivanov C, Vladovska Y (1978) Formation of purine derivatives under conditions possible on the primitive Earth. Dokl Bolg Akad Nauk 31:1605–1608Google Scholar
  23. Kaukinen U, Lyytikäinen S, Mikkola S, Lönnberg H (2002) The reactivity of phosphodiester bonds within linear single-stranded oligoribonucleotides is strongly dependent on the base sequence. Nucleic Acids Res 30:468–467PubMedCrossRefGoogle Scholar
  24. Kawamura K (2001) Comparison of the rates of prebiotic formation and hydrolysis of RNA under hydrothermal environments and its implications on the chemical evolution of RNA. Nucleic Acids Symp Ser 1:239–240Google Scholar
  25. Kierzek R (1992) Nonenzymatic hydrolysis of oligoribonucleotides. Nucleic Acids Res 20:5079–5084PubMedCrossRefGoogle Scholar
  26. Krooss BM, Brothers L, Engel MH (1991) Geochromatography in petroleum migration: a review. Geol Soc 59:149–163, London, Special PublicationsGoogle Scholar
  27. Lane BG, Butler GC (1959) The exceptional resistance of certain oligoribonucleotides to alkaline degradation. Biochim Biophys Act 33:281–283CrossRefGoogle Scholar
  28. Larter S, Bowler B, Clarke E, Wilson C, Moffatt B, Bennett B, Yardley G, Carruthers D (2000) An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock. Geochem Trans 1:1467–4866CrossRefGoogle Scholar
  29. Li Y, Breaker RR (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J Am Chem Soc 121:5364–5372CrossRefGoogle Scholar
  30. Macdougall JD, Lugmair GW, Kerridge JF (1984) Early aqueous activity on primitive meteorite parent bodies. Nature 307:249–251PubMedCrossRefGoogle Scholar
  31. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529PubMedCrossRefGoogle Scholar
  32. Miyakawa S, Cleaves HJ, Miller SL (2002) The cold origin of life: a implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208PubMedCrossRefGoogle Scholar
  33. Morowitz HJ, Kostelnik J, Yang J, Cody GD (2000) The origin of intermediary metabolism. Proc Natl Acad Sci USA 97:7704–7708PubMedCrossRefGoogle Scholar
  34. Morrow JR, Aures K, Epstein DJ (1995) Metal ion promoted attack of an alcohol on a phosphate diester: modelling the role of metal ions in RNA self-splicing reactions. Chem Comm 23:2431–2432CrossRefGoogle Scholar
  35. Perreault DM, Anslyn EV (1997) Unifying the current data on the mechanism of cleavage-transesterification of RNA. Angew Chem Int Ed Engl 36:432–450CrossRefGoogle Scholar
  36. Rajamani S, Vlassov A, Coombs A, Olasagasti F, Deamer DW (2008) Lipid-assisted synthesis of long RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74PubMedCrossRefGoogle Scholar
  37. Raunier S, Chiavassa T, Duvernay F, Borget F, Aycard JP, Dartois E, d’Hendecourt L (2004) Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices. Astron Astrophys 416:165–169CrossRefGoogle Scholar
  38. Rubin RH, Swenson GW, Benson RC, Tigelaar HL, Flygare WH (1971) Microwave detection of interstellar formamide. Astrophys J 169:L39CrossRefGoogle Scholar
  39. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A Possible prebiotic synthesis of purine, cytosine, and 4(3 H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253PubMedCrossRefGoogle Scholar
  40. Saladino R, Crestini C, Ciciriello F, Costanzo G, Negri R, Di Mauro E (2004) A novel synthesis of biomolecules precursors. In: Ehrenfreund P (ed) Astrobiology: Future Perspectives. Netherlands, pp. 393-413Google Scholar
  41. Saladino R, Crestini C, Costanzo G, Di Mauro E (2005) On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA Molecules. Top Curr Chem 259:29–68CrossRefGoogle Scholar
  42. Saladino R, Crestini C, Ciciriello F, Di Mauro E, Costanzo G (2006a) Origin of informational polymers: differential stability of phosphoester bonds in ribo monomers and oligomers. J Biol Chem 281:5790–5796CrossRefGoogle Scholar
  43. Saladino R, Crestini C, Neri V, Ciciriello F, Costanzo G, Di Mauro E (2006b) Origin of informational polymers: the concurrent roles of formamide and phosphates. Chem Bio Chem 7:1707–1714Google Scholar
  44. Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Formamide chemistry and the origin of informational polymers. Chem Biodivers 4:694–720PubMedCrossRefGoogle Scholar
  45. Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E (2008) Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J Am Chem Soc 130:15512–15518PubMedCrossRefGoogle Scholar
  46. Saladino R, Crestini C, Ciciriello F, Pino S, Costanzo G, Di Mauro E (2009) From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Res Microbiol 160:441–448PubMedCrossRefGoogle Scholar
  47. Schmitt-Kopplin P, Gabelicab Z, Gougeonc RD, Feketea A, Kanawatia B, Harira M, Gebefuegia I, Eckeld G, Hertkorna N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768PubMedCrossRefGoogle Scholar
  48. Schutte WA, Boogert ACA, Tielens AGGM, Whittet DCB, Gerakines PA, Chiar JE, Ehrenfreund P, Greenberg JM, van Dishoeck EF, de Graauw T (1999) Weak ice absorption features at 7.24 and 7.41 mm in the spectrum of the obscured young stellar object W 33A? Astron Astrophys 343:966–976Google Scholar
  49. Smith KC, Allen FW (1953) The liberation of polynucleotides by the alkaline hydrolysis of ribonucleic acid from yeast. J Am Chem Soc 75:2131–2133CrossRefGoogle Scholar
  50. Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. Proc Natl Acad Sci USA 101:13168–13173PubMedCrossRefGoogle Scholar
  51. Soukup G, Breaker R (1999a) Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5:1308–1325PubMedCrossRefGoogle Scholar
  52. Soukup GA, Breaker RR (1999b) Nucleic acid molecular switches. Trends Biotechnol 17:469–476PubMedCrossRefGoogle Scholar
  53. Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation. Geochim Cosmochim Acta 45:563–569CrossRefGoogle Scholar
  54. Wing MR, Bada JL (1991) Geochromatography on the parent body of the carbonaceous chondrite Ivuna. Geochim Cosmochim Acta 55:2937–2942CrossRefGoogle Scholar
  55. Yamada H, Okamoto T (1972) A one-step synthesis of purine ring from formamide. Chem Pharm Bull 20:623Google Scholar
  56. Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) Reaction mechanism for purine ring formation as studied by 13C-15N coupling. Tetrahedron Lett 42:4039–4042CrossRefGoogle Scholar
  57. Zhanpeisov NU, Leszczynski J (1999) Specific solvation effects on the structures and properties of Watson–Crick and reverse Watson–Crick isocytosine–cytosine and guanine–cytosine base pairs: a theoretical ab initio study. J Mol Struct THEOCHEM 487:107–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raffaele Saladino
    • 1
  • Claudia Crestini
    • 2
  • Cristina Cossetti
    • 3
  • Ernesto Di Mauro
    • 3
  • David Deamer
    • 4
  1. 1.Department of Agrobiology and AgrochemistryUniversity of TusciaViterboItaly
  2. 2.Department of Science and Chemical TechnologiesUniversity of Tor VergataRomaItaly
  3. 3.Department of Biology and Biotechnology Charles DarwinUniversity La SapienzaRomaItaly
  4. 4.Department of Biomolecular EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations