Origins of Life and Evolution of Biospheres

, Volume 41, Issue 4, pp 307–316 | Cite as

Borate Minerals and Origin of the RNA World

  • Edward S. Grew
  • Jeffrey L. Bada
  • Robert M. Hazen
Prebiotic Chemistry


The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300–3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.


Boron Borate RNA world Ribose Hadean Continental crust 



We thank Nikolay N. Pertsev for assistance in obtaining copies of critical literature that would otherwise be inaccessible and two anonymous reviewers for thoughtful and constructive comments on an earlier version of the manuscript. Additionally, Antonio Lazcano and H. James Cleaves provided helpful comments. ESG is supported by U.S. National Science Foundation (NSF) grant EAR 0837980 to the University of Maine. JLB is also affiliated with the Center for Chemical Evolution at the Georgia Institute of Technology, which is jointly supported by NSF (CHE-1004570) and NASA’s Astrobiology Institute. RMH thanks NSF (EAR-1023889), Astrobiology Institute of the National Aeronautics and Space Administration, the Deep Carbon Observatory, and the Carnegie Institution for Science for support of research on mineral evolution and the origin of life.


  1. Anovitz LM, Grew ES (2002) Mineralogy, petrology and geochemistry of boron: an introduction. In: Grew ES, Anovitz LM (eds), Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, 2nd printing. Mineralogical Society of America, Washington, pp 1–40, 115–116, 385Google Scholar
  2. Appel PWU (1984) Tourmaline in the Early Archaean Isua supracrustal belt, West Greenland. J Geol 92:599–605CrossRefGoogle Scholar
  3. Appel PWU (1995) Tourmalinites in the 3800 Ma old Isua supracrustal belt, West Greenland. Precambrian Res 72:227–234CrossRefGoogle Scholar
  4. Behr H-J, Ahrendt H, Porada H, Röhrs J, Weber K (1983) Upper Proterozoic playa-lake deposits in the Damara orogen, SWA/Namibia. Spec Publ Geol Soc S Afr 11:1–20Google Scholar
  5. Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–797PubMedCrossRefGoogle Scholar
  6. Boutlerow A (1861) Formation synthétique d’une substance sucrée. C R Acad Sci 53:145–147Google Scholar
  7. Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16CrossRefGoogle Scholar
  8. Bowser CJ (1965) Geochemistry and petrology of the sodium borates in the non-marine evaporite environment. Ph.D. Thesis, University of California, Los AngelesGoogle Scholar
  9. Braitsch O (1971) Salt deposits. Their origin and composition. Springer, BerlinGoogle Scholar
  10. Brookins DG (1969) A list of minerals found in Riley County kimberlites. Trans Kans Acad Sci 72(3):365–373CrossRefGoogle Scholar
  11. Byerly GR, Palmer MR (1991) Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron. Contrib Mineral Petrol 107:387–402PubMedCrossRefGoogle Scholar
  12. Byerly GR, Kröner A, Lowe DR, Todt W, Walsh MM (1996) Prolonged magmatism and time constraints for sediment deposition in the Early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res 78:125–138CrossRefGoogle Scholar
  13. Carrano CJ, Schellenberg S, Amin SA, Green DH, Küpper FC (2009) Boron and marine life: a new look at an enigmatic bioelement. Mar Biotechnol 11:431–440PubMedCrossRefGoogle Scholar
  14. Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279CrossRefGoogle Scholar
  15. Chaussidon M, Appel PWU (1997) Boron isotopic composition of tourmalines from the 3.8-Ga-old Isua supracrustals, West Greenland: implications on the δ11B value of early Archean seawater. Chem Geol 136:171–180CrossRefGoogle Scholar
  16. Cherniak DJ, Watson EB (2010) Li diffusion in zircon. Contrib Mineral Petrol 160:383–390CrossRefGoogle Scholar
  17. Crowley JL (2003) U–Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland. Precambrian Res 126:235–257CrossRefGoogle Scholar
  18. Dobrzhinetskaya LF, Wirth R, Yang J, Hutcheon ID, Weber PK, Green HW II (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Natl Acad Sci 106:19233–19238PubMedCrossRefGoogle Scholar
  19. Fan D, Yang P, Wang R (1999) Characteristics and origin of the Middle Proterozoic Dongshuichang chambersite deposit, Jixian, Tianjin, China. Ore Geol Rev 15:15–29CrossRefGoogle Scholar
  20. Faure G, Mensing TM (2010) The Transantarctic mountains. Rocks, ice, meteorites and water. Springer, DordrechtGoogle Scholar
  21. Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples. Geol Surv Can Bull 423:1–86Google Scholar
  22. Fitzpatrick JJ, Muhs DR (1989) Borax in the supraglacial moraine of the Lewis Cliff, Buckley Island Quadrangle—First Antarctic occurrence. Antarct J US 24(5):63–65Google Scholar
  23. Fitzpatrick JJ, Muhs DR, Jull AJT (1990) Saline minerals in the Lewis Cliff ice tongue, Buckley Island Quadrangle, Antarctica. Antarct Res Ser 50:57–69Google Scholar
  24. Gale WA, Foshag WF, Vonsen M (1939) Teepleite, a new mineral from Borax Lake, California. Am Mineral 24:48–52Google Scholar
  25. Garrett DE (1998) Borates. Handbook of deposits, processing, properties, and use. Academic, San DiegoGoogle Scholar
  26. Grew E, Hazen RM (2010) Evolution of boron minerals: has early species diversity been lost from the geological record? Geol Soc Am Abstr Programs 42(5):92Google Scholar
  27. Grice JD, Gault RA, Van Velthuizen J (2005) Borate minerals of the Penobsquis and Millstream deposits, southern New Brunswick, Canada. Can Mineral 43:1469–1487CrossRefGoogle Scholar
  28. Harrison TM (2009) The Hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505CrossRefGoogle Scholar
  29. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc 167:229–248CrossRefGoogle Scholar
  30. Hawthorne FC, Burns PC, Grice JD (2002) The crystal chemistry of boron. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, 2nd printing. Mineralogical Society of America, Washington, D.C., pp 41–116, 385.Google Scholar
  31. Helvaci C, Ortí F (2004) Zoning in the Kirka borate deposit, western Turkey: primary evaporitic fractionation or diagenetic modifications? Can Mineral 42:1179–1204CrossRefGoogle Scholar
  32. Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15Google Scholar
  33. Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20:889–904CrossRefGoogle Scholar
  34. Izawa MRM, Nesbitt HW, MacRae ND, Hoffman EL (2010) Composition and evolution of the early oceans: evidence from the Tagish Lake meteorite. Earth Planet Sci Lett 298:443–449CrossRefGoogle Scholar
  35. Joyce GF (1989) RNA evolution and the origin of life. Nature 338:217–224PubMedCrossRefGoogle Scholar
  36. Joyce GF, Orgel LE (2006) Progress toward understanding the origin of the the RNA world. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor, pp 23–56Google Scholar
  37. Kalyuzhnyy VA (1958) On the studies of “prisoner” minerals in multiphase inclusions. Mineral Sb L’vovsk Geol Obshchestva 12:116–128 (in Russian)Google Scholar
  38. Kemp AJS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56CrossRefGoogle Scholar
  39. Kim H-J, Benner SA (2010) Comment on “The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates”. Science 329:902-aGoogle Scholar
  40. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010a) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 237:984–986CrossRefGoogle Scholar
  41. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010b) Response to comment on “The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates”. Science 329:902-bCrossRefGoogle Scholar
  42. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci 92:8158–8160PubMedCrossRefGoogle Scholar
  43. Leeman WP, Sisson VB (2002) Geochemistry of boron and its implications for crustal and mantle processes. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, 2nd printing. Mineralogical Society of America, Washington, D.C., pp 645–708Google Scholar
  44. Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry. Astrophysics and space science proceedings. Springer, New York, pp 379–417CrossRefGoogle Scholar
  45. Lowe DR, Fisher Worrell G (1999) Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton greenstone belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton greenstone belt, South Africa. Geol Soc Am Spec Pap 329:167–188Google Scholar
  46. Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300CrossRefGoogle Scholar
  47. Mazurov MP, Grishina SN, VYe I, Titov AT (2007) Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian Platform. Geol Rudn Mestorozd 49(4):306–320 (in Russian)Google Scholar
  48. Meng Y (1988) Tourmaline from the Isua supracrustal belt, southern West Greenland. Master’s Thesis, Washington University, Saint Louis, MissouriGoogle Scholar
  49. Meng Y, Dymek RF (1987) Compositional relationships and petrogenetic implications of tourmaline from the 3.8 Ga Isua supracrustal belt, West Greenland. Geol Soc Am Abstr Programs 19(7):770Google Scholar
  50. Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum, New YorkCrossRefGoogle Scholar
  51. Müller D, Pitsch S, Kittaka A, Wagner E, Wintner CE, Eschenmoser A (1990) Chemistry of alpha-aminonitriles. Aldomerisation of glycolaldehyde phosphate to rac-hexose 2, 4, 6-triphosphates and in presence of formaldehyde) rac-pentose 2, 4-diphosphates: rac-allose 2, 4, 6-triphosphate and rac-ribose 2, 4-diphosphate are the main reaction products. Helv Chim Acta 73:1410–1468 (in German)CrossRefGoogle Scholar
  52. Nozaki Y (1997) A fresh look at element distribution in the North Pacific. Eos Trans Am Geophys Union 78:221 and Accessed 12 December 2010Google Scholar
  53. Nutman AP, Friend CRL (2009) New 1:20, 000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny. Precambrian Res 172:189–211CrossRefGoogle Scholar
  54. O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean crust. Science 321:1828–1831PubMedCrossRefGoogle Scholar
  55. Orgel LE (1986) RNA catalysis and the origin of life. J Theor Biol 123:127–149PubMedCrossRefGoogle Scholar
  56. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA World. Crit Rev Biochem Mol Biol 39:99–123PubMedCrossRefGoogle Scholar
  57. Padovani ER, Tracy RJ (1981) A pyrope-spinel (alkremite) xenolith from Moses Rock Dike: first known North American occurrence. Am Mineral 66:741–745Google Scholar
  58. Palme H, O’Neill St C (2004) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, vol. 2 of Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 1–38Google Scholar
  59. Park H, Schlesinger WH (2002) Global biogeochemical cycle of boron. Glob Biogeochem Cycles 16(4):1072. doi: 10.1029/2001GB001766,2002 CrossRefGoogle Scholar
  60. Pascucci V, Gibling MR (2003) Late Palaeozoic evolution of the eastern Maritimes Basin, Atlantic Canada. Boll Soc Geol Ital 2:219–237Google Scholar
  61. Pavlishin VI, Dovgyi SA (2007) Mineralogy of the Volynian chamber pegmatites, Ukraine. Mineral Alm 12:6–125Google Scholar
  62. Peng Q-M, Palmer MR (2002) The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin Provinces, northeast China. Econ Geol 97:93–108CrossRefGoogle Scholar
  63. Prieur BE (2001) Étude de l’activité prébiotique potentielle de l’acide borique. C R Acad Sci Chim/Chem 4:667–670Google Scholar
  64. Pring A, Kolitsch U, Francis G (2000) Additions to the mineralogy of the Iron Monarch deposit, Middleback Ranges, South Australia. Aust J Mineral 6(1):9–23Google Scholar
  65. Rasmussen B, Fletcher IR, Muhling JR, Wilde SA (2010) In situ U–Th–Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Res 180:26–46CrossRefGoogle Scholar
  66. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196PubMedCrossRefGoogle Scholar
  67. Robertson MP, Joyce GF (2010) The Origins of the RNA World. Cold Spring Harb Perspect Biol doi:  10.1101/cshperspect.a003608
  68. Roulston BV, Waugh DCE (1981) A borate mineral assemblage from the Penobsquis and Salt Springs evaporite deposits of southern New Brunswick. Can Mineral 19:291–301Google Scholar
  69. Rudnick RL, Gao S (2004) Composition of the continental crust. In: Rudnick RL (ed) The crust, vol. 3 of Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp 1–64Google Scholar
  70. Schwartz AW, de Graaf RM (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106CrossRefGoogle Scholar
  71. Scorei R, Cimpoiaşu VM (2006) Boron enhances the thermostability of carbohydrates. Orig Life Evol Biosph 36:1–11PubMedCrossRefGoogle Scholar
  72. Semeykina LK, Kozlova VN. (1985) Mineralogical-petrographic characteristics of the potash rocks of the Nepskoye basin. In: Obshchiye Problemy Galogenezesa, Nauka, Moscow, pp 143–148 (in Russian)Google Scholar
  73. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85PubMedCrossRefGoogle Scholar
  74. Shi X, Zhang C, Jiang G, Liu J, Wang Y, Liu D (2008) Microbial mats in the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon generation. J China Univ Geosci 19:549–566CrossRefGoogle Scholar
  75. Slack JF, Palmer MR, Stevens BPJ (1989) Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits. Nature 342:913–916CrossRefGoogle Scholar
  76. Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541CrossRefGoogle Scholar
  77. Smith D (1995) Chlorite-rich ultramafic reaction zones in Colorado Plateau xenoliths: recorders of sub-Moho hydration. Contrib Mineral Petrol 121(185):200Google Scholar
  78. Smith DGW, Nickel EH (2007) A system of codification for unnamed minerals: report of the subcommittee for unnamed minerals of the IMA commission on new minerals, nomenclature and classification. Can Mineral 45:983–1055CrossRefGoogle Scholar
  79. Smith GI, Medrano MD (2002) Continental borate deposits of Cenozoic age. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, 2nd printing. Mineralogical Society of America, Washington, D.C., pp 263–298Google Scholar
  80. Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126:9578–9583PubMedCrossRefGoogle Scholar
  81. Stilling A, Černý P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba. XVI Zonal and bulk compositions and their petrogenetic significance. Can Mineral 44:599–623CrossRefGoogle Scholar
  82. Tanner LH (2002) Borate formation in a perennial lacustrine setting: Miocene–Pliocene Furnace Creek Formation, Death Valley, California, USA. Sediment Geol 148:259–273CrossRefGoogle Scholar
  83. Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Edward S. Grew
    • 1
  • Jeffrey L. Bada
    • 2
  • Robert M. Hazen
    • 3
  1. 1.Department of Earth Sciences, 5790 Bryand Global Sciences CenterUniversity of MaineOronoUSA
  2. 2.Scripps Institution of OceanographyUniversity of California at San DiegoSan DiegoUSA
  3. 3.Carnegie Institution of Washington, Geophysical LaboratoryWashingtonUSA

Personalised recommendations