Origins of Life and Evolution of Biospheres

, Volume 41, Issue 4, pp 331–345 | Cite as

Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

  • Marta Ruiz-Bermejo
  • Luis A. Rivas
  • Arantxa Palacín
  • César Menor-Salván
  • Susana Osuna-Esteban
Prebiotic Chemistry


Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of “intractable polymers” named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.


Prebiotic synthesis Polymer condensation Aerosol chemistry Tholins Alkaline oceans Prebiotic environments 



The authors have used the research facilities of the Centro de Astrobiología (CAB) and have been supported by the Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” (INTA) and by the projects AYA2009-13920-C02-01 of the Ministerio de Ciencia e Innovación (Spain). We thank Dr. S. Veintemillas for his useful comments. We thank Profesor G. Salcedo and Dr. A. Díaz-Perales for the use of their research facilities in their laboratory in the Department of Biotechnology at the Escuela Técnica Superior de Ingenieros Agrónomos (UPM).


  1. Dobson CM, Ellison GB, Tuck AF, Vaida V (2000) Atmospheric aerosols as prebiotic chemical reactors. Proc Nat Acad Sci USA 97:11864–11868PubMedCrossRefGoogle Scholar
  2. Donaldson DJ, Tervahattu H, Tuck AF, Vaida V (2004) Organic aerosols and the origin of life: a hypothesis. Orig Life Evol Biosph 34:57–67PubMedCrossRefGoogle Scholar
  3. Donaldson DJ, Vaida V (2006) The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem Rev 106:1445–1461PubMedCrossRefGoogle Scholar
  4. Draganic ZD, Kinetic V, Jonanovic S, Draganic IG (1980) The radiolysis of aqueous ammonium cyanide-Compounds of interests to chemical evolution studies. J Mol Evol 15:239–260PubMedCrossRefGoogle Scholar
  5. Ellison GB, Tuck AF, Vaida V (1999) Atmospheric processing of organic aerosols. J Geophys Res 104:11633–11641CrossRefGoogle Scholar
  6. Ferris JP, Edelson EH, Auyeung JM, Joshi PC (1981) Structural studies on HCN oligomers. J Mol Evol 17:69–77PubMedCrossRefGoogle Scholar
  7. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053PubMedCrossRefGoogle Scholar
  8. Grotzinger JP, Kasting JF (1993) New constrains on Precambrian ocean composition. J Geol 101:235–243PubMedCrossRefGoogle Scholar
  9. Holm NG, Dumont M, Ivarsson M, Konn C (2006) Alkaline fluid circulation in ultramafic rocks and formation of nucleotides constituents: a hypothesis. Geochem Trans 7:7PubMedCrossRefGoogle Scholar
  10. Holm NG, Neubeck A (2009) Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochem Trans 10:9PubMedCrossRefGoogle Scholar
  11. Joyce GF, Orgel LE (1999) In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA World. Cold Spring Harbor Laboratory Press, New York, pp 49–77Google Scholar
  12. Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68:176–184PubMedCrossRefGoogle Scholar
  13. Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palageo Palaeoclimat Palaeoecol 219:53–59CrossRefGoogle Scholar
  14. Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes. Bull’InstiOcéanogr Monaco special 13:61–117Google Scholar
  15. Kempe S, Kazmierczak J (2002) Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? Astrobiology 2:123–130PubMedCrossRefGoogle Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  17. Lerman L, Teng J (2004). In the beginning. In: Seckbach J (ed) Origins: Genesis and Diversity of Life. Springer, pp 35–55Google Scholar
  18. Macleod G, Mckeown C, Hall AJ, Russell MJ (1994) Hydrotermal and oceanic pH conditions of possible relevance to the origin of life. Orig Life Evol Biosph 24:19–41PubMedCrossRefGoogle Scholar
  19. McDonald GD, Khare BN, Thompson WR, Sagan C (1991) CH4/NH3/H2O Spark tholin: chemical analysis and interaction with jovian aqueous clouds. Icarus 94:354–367PubMedCrossRefGoogle Scholar
  20. McDonald GD, Thompson WR, Heinrich M, Khare BN, Sagan C (1994) Chemical investigation of Titan and Triton tholins. Icarus 108:137–145PubMedCrossRefGoogle Scholar
  21. Meléndez-Hevia E, Wadell TG, Cascante M (1996) The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions and opportunism in the design of metabolic pathways during evolution. J Mol Evol 43:293–303PubMedCrossRefGoogle Scholar
  22. Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4:301–319CrossRefGoogle Scholar
  23. Orgel LE (2000) Self-organizing biochemical cycles. Proc Nat Acad Sci USA 97:12503–12507PubMedCrossRefGoogle Scholar
  24. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007a) Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosol. Orig Life Evol Biosph 37:123–142PubMedCrossRefGoogle Scholar
  25. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007b) The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. Orig Life Evol Biosph 37:507–521PubMedCrossRefGoogle Scholar
  26. Ruiz-Bermejo M, Menor-Salván C, Mateo-Martí E, Osuna-Esteban S, Martín-Gago JA, Veintemillas-Verdaguer S (2008) CH4/N2/H2 spark hydrophilic tholins: a systematic approach to the characterization of tholins. Icarus 198:232–241CrossRefGoogle Scholar
  27. Ruiz-Bermejo M, Menor-Salván C, de la Fuente JL, Mateo-Martí E, Osuna-Esteban S, Martín-Gago JA, Veintemillas-Verdaguer S (2009) CH4/N2/H2 Spark hydrophobic tholins: a systematic approach to the characterization of tholins. Part II. Icarus 204:672–680CrossRefGoogle Scholar
  28. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402CrossRefGoogle Scholar
  29. Russell MJ (2003) The importance of being alkaline. Science 302:580–581PubMedCrossRefGoogle Scholar
  30. Sagan C, Khare BN, Thompson GD McDonald, Wing MR, Bada JL, Vo-Dinh T, Arakawa ET (1993) Polyciclic aromatic hydrocarbons in the atmosphere of Titan and Jupiter. Astrophys J 414:399–405PubMedCrossRefGoogle Scholar
  31. Sagan C, Khare BN (1979) Tholins: organic chemistry of interstellar grains and gas. Nature 277:102–107CrossRefGoogle Scholar
  32. Sarker N, Somogyi A, Lunine JI, Smith MA (2003) Titan aerosol analogues: analysis of the non-volatile tholins. Astrobiology 3:719–726PubMedCrossRefGoogle Scholar
  33. Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO and CO2. J Mol Evol 19:376–382PubMedCrossRefGoogle Scholar
  34. Shah DO (1970) The origin of membranes and related surface phenomena. In: Ponnamperuma C (ed) Exobiology. North Holland, pp 235–265Google Scholar
  35. Takano Y, Ohashi A, Kaneko T, Kobayashi K (2004) Abiotic synthesis of high-molecular-weight organics from an inorganic gas mixture of carbon monoxide, ammonia, and water by 3 MeV proton irradiation. Appl Phys Lett 84:1410–1412CrossRefGoogle Scholar
  36. Tervahattu H, Tuck A, Vaida V (2004). Chemistry in prebiotic aerorsols: A mechanism for the origin of life. In: Seckbach J (ed) Origins: Genesis, Evolution and Diversity of Life. Springer, pp 153–165Google Scholar
  37. Tuck A (2002) The role of atmospheric aerosols in the origin of life. Surv Geophys 23:379–409CrossRefGoogle Scholar
  38. Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16:117–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marta Ruiz-Bermejo
    • 1
  • Luis A. Rivas
    • 1
  • Arantxa Palacín
    • 2
  • César Menor-Salván
    • 1
  • Susana Osuna-Esteban
    • 1
  1. 1.Departamento de Evolución MolecularCentro de Astrobiología [Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA)]Torrejón de ArdozSpain
  2. 2.Unidad de Bioquímica, Departamento de BiotecnologíaE.T.S. Ingenieros Agrónomos, UPMCiudad UniversitariaSpain

Personalised recommendations