Origins of Life and Evolution of Biospheres

, Volume 40, Issue 3, pp 253–272 | Cite as

The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon

  • Alain Meunier
  • Sabine Petit
  • Charles S. Cockell
  • Abderrazzak El Albani
  • Daniel Beaufort
Prebiotic Chemistry


During the Hadean to early Archean period (4.5–3.5 Ga), the surface of the Earth’s crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called “mesostasis”. The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.


Fe-clays Basalt-komatiite Prebiotic Molecule synthesis Hadean 



This study was supported by the University of Poitiers and the Institut des Sciences de la Terre et de l’Univers du Centre National de la Recherche Scientifique (INSU-CNRS).


  1. Alt JC, Honnorez J (1984) Alteration of the upper oceanic crust DSDP Site 417: mineralogy and chemistry. Contrib Mineral Petrol 87:149–169CrossRefGoogle Scholar
  2. Amelin Y (2005) A tale of early Earth told by zircons. Science 310:1914–1915CrossRefPubMedGoogle Scholar
  3. Andrews AJ (1977) Low temperature fluid alteration of oceanic Layer 2 basalts. Can J Earth Sci 14:911–926Google Scholar
  4. Armstrong RL (1991) The persistent myth of crustal growth. Aust J Earth Sci 38:613–630CrossRefGoogle Scholar
  5. Arndt NT (1999) Why was flood volcanism on submerged continental platforms so common in the Precambrian? Precambrian Res 97:155–164CrossRefGoogle Scholar
  6. Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and Iron-rich tholeiitic lavas of Munro Township, Northeast Ontario. J Petrol 18:319–369Google Scholar
  7. Arndt NT, Lesher CM, Barnes SJ (2008) Komatiite. Cambridge Univ. PressGoogle Scholar
  8. Badaut D, Besson G, Decarreau A, Rautureau R (1985) Occurrence of a ferrous trioctahedral smectite in recent sediments of Atlantis II Deep Red Sea. Clay Miner 20:389–404CrossRefGoogle Scholar
  9. Badaut D, Decarreau A, Besson G (1992) Ferripyrophyllite and related Fe3+ - rich 2:1 clays in recent deposits of Atlantis II Deep, Red Sea. Clay Miner 27:227–244CrossRefGoogle Scholar
  10. Banin A, Lawless JG, Mazzurco J, Church FM, Margulies L, Orenberg JB (1985) pH profile of the adsorption of nucleotides onto montmorillonite. Orig Life Evol Biosph 15:89–101CrossRefPubMedGoogle Scholar
  11. Beresford SW, Cas RAF, Lambert DD, Stone WE (2000) Vesicles in thick komatiite lava flows, Kambalda, Western Australia. J Geol Soc London 157:11–14Google Scholar
  12. Beresford SW, Cas R, Lahaye Y, Jane M (2002) Facies architecture of an Archean komatiite-hosted Ni-sulphide ore deposit, Victor, Kambalda, Western Australia: implication for komatiite lava emplacement. J Volc Geoth Res 118:57–75CrossRefGoogle Scholar
  13. Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, LondonGoogle Scholar
  14. Brack A (1976) Polymérisation en phase aqueuse d’acides aminés sur des argiles. Clay Miner 11:117–120CrossRefGoogle Scholar
  15. Brack A (2006) Clay minerals and the origin of life. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science. Elsevier, Developments in Clay ScienceGoogle Scholar
  16. Cairns-Smith AG (1982) Genetic takeover and the origin of life. Cambridge Univ. PressGoogle Scholar
  17. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  18. Chevrier V, Poulet F, Bibring JP (2007) Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448:60–63CrossRefPubMedGoogle Scholar
  19. Christidis GE, Huff WD (2009) Geological aspects and genesis of bentonites. Elements 5:93–98CrossRefGoogle Scholar
  20. Cockell CS (2006) The origin and emergence of life under impact bombardment. Phi Trans Royal Soc B 361:1845–1856CrossRefGoogle Scholar
  21. Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636CrossRefGoogle Scholar
  22. Cygan RT, Greathouse JA, Heinz H, Kalinichev AG (2009) Molecular models and simulations of layered materials. J Mater Chem 19:2470–2481CrossRefGoogle Scholar
  23. Dähn R, Scheidegger A, Manceau A, Schlegel M, Baeyens B, Bradbury MH (2001) Ni clay neoformation on montmorillonite surface. J Synchr Rad 8:533–535CrossRefGoogle Scholar
  24. Dähn R, Scheidegger AM, Manceau A, Schlegel ML, Baeyens B, Bradbury MH, Chateigner D (2003) Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study. Geochim Cosmochim Acta 67:1–15CrossRefGoogle Scholar
  25. Dähn R, Jullien M, Scheidegger AM, Poinssot C, Baeyens B, Bradbury MH (2006) Identification of neoformed Ni-phyllosilicates upon Ni uptake in montmorillonite: a transmission electron microscopy and extended X-ray absorption fine structure study. Clays Clay Miner 54:209–219CrossRefGoogle Scholar
  26. Dann JC (2001a) The 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa, Part I: new maps and magmatic architecture. J South Afr Geol 103:47–68CrossRefGoogle Scholar
  27. Dann JC (2001b) Vesicular komatiites, 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones. Bull Volc 63:462–481CrossRefGoogle Scholar
  28. Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966CrossRefGoogle Scholar
  29. Ddani M, Meunier A, Zahraoui M, Beaufort D, El Wartiti M, Fontaine C, Boukili B, El Mahi M (2005) Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (northeast Morocco). Clays Clay Miner 53:250–267CrossRefGoogle Scholar
  30. Decarreau A, Colin F, Herbillon A, Manceau A, Nahon D, Paquet H, Trauth-Badaud D, Trescases JJ (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays Clay Miner 35:1–10CrossRefGoogle Scholar
  31. Echeverria LM (1980) Tertiary or Mesozoic komatiites from Gorgona Island, field relations and geochemistry. Contrib Mineral Petrol 73:253–266CrossRefGoogle Scholar
  32. Farquhar J, Bao H, Thiemens MH (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758CrossRefPubMedGoogle Scholar
  33. Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1:145–149CrossRefGoogle Scholar
  34. Ferris JP (2006) Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origin of life. Phil Trans Royal Soc B 361:1777–1786CrossRefGoogle Scholar
  35. Ferris JP, Huang CH, Hagan WJ Jr (1986) Clays as prototypical enzymes for prebiological formation of phosphate esters. Orig Life Evol Biosph 17:173–174Google Scholar
  36. Franchi M, Ferris JP, Gallori E (2003) Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig Life Evol Biosph 33:1–16CrossRefPubMedGoogle Scholar
  37. Fu L, Weckhuysen BM, Verbeckmoes AA, Schoonheydt RA (1996) Clay intercalated Cu(II) amino acid complexes: synthesis, spectroscopy and catalysis. Clay Miner 31:491–500CrossRefGoogle Scholar
  38. Furnes H, Banerjee NR, Muelhenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 204:578–581CrossRefGoogle Scholar
  39. Gaudin A, Petit S, Rose J, Martin F, Decarreau A, Noack Y, Borschneck D (2004) The accurate crystal chemistry of ferric smectites from the laterite nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Miner 39:453–467CrossRefGoogle Scholar
  40. Geptner A, Kristmannsdottir H, Kristiansson J, Marteinsson V (2002) Biogenic saponite from an active submarine hot spring, Iceland. Clays Clay Miner 50:174–185CrossRefGoogle Scholar
  41. Gonçalves NMM, Dudoignon P, Meunier A (1990) The hydrothermal alteration of continental basaltic flows in Northern Parana Basin (Ribeirao Preto, Sao Paulo, Brazil). Proc. 9th Int. Clay Conf., (eds Tardy Y. & Farmer V. C.). Strasbourg, 153–162Google Scholar
  42. Grauby O, Petit S, Decarreau A, Baronnet A (1993) The beidellite-saponite series: an experimental approach. Eur J Miner 5:623–635Google Scholar
  43. Grauby O, Petit S, Decarreau A, Baronnet A (1994) The nontronite-saponite series: an experimental approach. Eur J Miner 6:99–112Google Scholar
  44. Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965. Deep-Sea Res 27A:161–171CrossRefGoogle Scholar
  45. Hellmuth KH, Siitari-Kauppi M, Lindberg A (1993) Study of the porosity and migration pathways in crystalline rock by impregnation with 14C-polyméthylmethacrylate. J Cont Hydr 13:403–418CrossRefGoogle Scholar
  46. Hofstetter TB, Schwarzenbach RP, Haderlein SB (2003) Reactivity of Fe(II) species associated with clay minerals. Envir Sci Tech 37:519–528CrossRefGoogle Scholar
  47. Hofstetter TB, Neumann A, Schwarzenbach RP (2006) Reduction of Nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Envir Sci Tech 40:235–242CrossRefGoogle Scholar
  48. Huff WD (2006) Volcanism and its contribution to mudrock genesis. Turk J Earth Sci 15:111–122Google Scholar
  49. Isley AE, Abbott DH (1999) Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res 104:15461–15477CrossRefGoogle Scholar
  50. Jaisi DP, Liu C, Dong H, Blake RE, Fein JB (2008) Fe2+ sorption onto nontronite (NAu-2). Geochim Cosmochim Acta 72:5361–5371CrossRefGoogle Scholar
  51. Juteau T, Noack Y, Whitechurch H (1979) Mineralogy and geochemistry of alteration products in holes 417A and 417D basemant samples (Deep Sea Drilling Project LEG 51). In: Donnelly T, Francheteau J, Bryan W, Robinson P, Flower M, Salisbury M (eds) Initial Reports of the Deep Sea Drilling Project Ll, Lll, Lll: 1273–1297Google Scholar
  52. Kakegawa T, Noda M, Nannri H (2002) Geochemical cycles of bio-essential elements on the early Earth and their relationships to the origin of life. Res Geol 52:83–89CrossRefGoogle Scholar
  53. Kelley DS, Karson JA, Blackman DK, Frü-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebonk GT, Rivizzigno P, the AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412:145–149CrossRefPubMedGoogle Scholar
  54. Köster HM, Ehrlicher U, Gilg HA, Jordan R, Murad E, Onnich K (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Miner 34:579–599CrossRefGoogle Scholar
  55. Kozaki T, Jinhong L, Sato S (2008) Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentrations. Phys Chem Earth 33:957–961Google Scholar
  56. Lagaly G, Weiss A (1970) Inhomogeneous charge distribution in mica-type layer silicates. Proceed Reunion Hispano-Belga Minerales de la Arcilla, Madrid, pp 179–187Google Scholar
  57. Lahav N (1994) Minerals and the origin of life – hypotheses and experiments in heterogeneous chemistry. Heter Chem Rev 1:159–179Google Scholar
  58. Lajarige C, Petit S, Augas C, Decarreau A (1998) Stabilisation d’ions Fe2+ dans le réseau de smectites ferrifères de synthèse. C R Acad Sci Paris 327:789–794Google Scholar
  59. Lambert JF (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242CrossRefPubMedGoogle Scholar
  60. Macleod G, McKeown C, Hall AJ, Russell MJ (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig Life Evol Biosph 24:19–41CrossRefPubMedGoogle Scholar
  61. Manceau A (1990) Distribution of cations among the octahedral of phyllosilicates: insight from EXAFS. Can Miner 28:321–328Google Scholar
  62. Mas A (2000) Etude pétrographique et minéralogique des mésostases d’unités basaltiques et hawaiitiques de l’Atoll de Mururoa (Polynésie Française). Origine des phyllosilicates en présence. Ph. D. thesis, Poitiers univGoogle Scholar
  63. Mas A, Meunier A, Beaufort D, Patrier P, Dudoignon P (2008) Clay Minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). I. Mineralogy. Clays Clay Miner 56:711–729CrossRefGoogle Scholar
  64. Meunier A (2005) Clays. Springer-Verlag, BerlinGoogle Scholar
  65. Meunier A (2006) Why are clay minerals small? Clay Miner 41:551–566CrossRefGoogle Scholar
  66. Meunier A (2007) Soil hydroxyl-interlayered minerals: a re-interpretation of their crystallochemical properties. Clays Clay Miner 55:380–388CrossRefGoogle Scholar
  67. Meunier A, Mas A, Beaufort D, Patrier P, Dudoignon P (2008) Clay Minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). II. Petrography and geochemistry. Clays Clay Miner 56:730–750CrossRefGoogle Scholar
  68. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091CrossRefPubMedGoogle Scholar
  69. O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodynium-142 evidence for Hadean mafic crust. Science 321:1828–1831CrossRefPubMedGoogle Scholar
  70. Parsons I, Lee MR, Smith JV (1998) Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces. Proc Nat Acad Sci USA 95:15173–15176CrossRefPubMedGoogle Scholar
  71. Parthasarathy G, Choudary BM, Sreedhar B, Kunwar AC, Srinivasan R (2003) Ferrous saponite from the Deccan trap, India, and its application in adsorption and reduction of hexavalent chromium. Amer Miner 88:1983–1988Google Scholar
  72. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41CrossRefPubMedGoogle Scholar
  73. Peck DL, Hamilton MS, Shaw HB (1977) Numerical analyses of lava lake cooling models. Part II. Application to Alar lava lake, Hawaiia. Am J Sci 277:415–437Google Scholar
  74. Poulet F, Bibring JP, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C, the Omega Team (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438:623–627CrossRefPubMedGoogle Scholar
  75. Ransom B, Helgeson HC (1994) A chemical and thermodynamic model of aluminous dioctahedral-2/1 layer clay minerals in diagenetic processes - regular solution representation of interlayer dehydration in smectite. Amer J Sci 294:449–484Google Scholar
  76. Rausell-Colom JA, Salvador PS (1971) Complexes vermiculite-aminoacides. Clay Miner 9:139–149CrossRefGoogle Scholar
  77. Rollinson H (2008) Ophiolitic trndhjemites: a possible analogue for Hadean felsic “crust”. Terra Nova 20:364–369CrossRefGoogle Scholar
  78. Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in Hadean. Biogeosciences 2:97–111CrossRefGoogle Scholar
  79. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402CrossRefPubMedGoogle Scholar
  80. Russell MJ, Hall AJ, Noyce AJ, Fallick AE (2005) On hydrothermal convection systems znd the emergence of life. Econ Geol, 100th Anniv Sp. Paper 100:419–438Google Scholar
  81. Scheidegger AM, Strawn DG, Lamble G, Sparks DL (1998) The kinetics of mixed Ni-Al hydroxide formation on clay and aluminium oxide minerals: a time-resolved XAFS study. Geochim Cosmochim Acta 62:2233–2245CrossRefGoogle Scholar
  82. Schlegel ML, Manceau A, Chateigner D, Charlet L (1999) Sorption of metal ions on clay minerals I. Polarized EXAFS evidence for the adsorption of Co on the edges of hectorite particles. J Coll Inter Sci 215:140–158CrossRefGoogle Scholar
  83. Schlegel ML, Manceau A, Charlet L, Chateigner D, Hazemann JL (2001) Sorption of metal ions on clay minerals. 3. Nucleation and epitaxial growth of Zn phyllosilicates on the edge of hectorite. Geochim Cosmochim Acta 65:4155–4170CrossRefGoogle Scholar
  84. Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. Ambio 33:539–551PubMedGoogle Scholar
  85. Serefoglou E, Kiriaki L, Gournis D, Kalogeris E, Tzialla AA, Pavlidis HS, Maccallini E, Lubomska M, Rudolf P (2008) Smectite clays as solid supports for immobilization of b-glucosidase: synthesis, characterization, and biochemical properties. Chem Mat 20:4106–4115CrossRefGoogle Scholar
  86. Shapiro R (2007) A simpler origin for life. Sci Am 296:46–53CrossRefPubMedGoogle Scholar
  87. Staudigel H, Hart SR (1983) Alteration of basaltic glass: mechanisms and significance for the oceanic-seawater budget. Geochim Cosmochim Acta 47:337–350CrossRefGoogle Scholar
  88. Staudigel H, Chastain RA, Yayanos A, Boucier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154CrossRefGoogle Scholar
  89. Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–102CrossRefGoogle Scholar
  90. Stucki JW (2006) Iron redox processes in clay minerals. In: Bergaya F, Lagaly G, Theng BGK (eds) Handbook of clay science. Elsevier, AmsterdamGoogle Scholar
  91. Szilagyi I, Labadi I, Hernadi K, Kiss TIP (2005) Montmorillonite intercalated Cu(II)-histidine complex synthesis, characterisation and superoxide dismutase activity. Stud Surf Sci Cat 158:1011–1018CrossRefGoogle Scholar
  92. Thompson G (1973) A geochemical study of low-temperature interaction of sea water and oceanic igneous rocks. Am Geophys Union Trans 54:1015–1019Google Scholar
  93. Thompson HA, Parks GA, Brown GE Jr (1999) Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay water system. Geochim Cosmochim Acta 63:1767–1779CrossRefGoogle Scholar
  94. Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749CrossRefGoogle Scholar
  95. Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer-Verlag, BerlinGoogle Scholar
  96. Vieira Coelho AC, Ladrière J, Poncelet G (2000) Nickel, iron-containing clay minerals from Niquelandia deposit, Brazil. 2. Behaviour under reducing conditions. Appl Clay Sci 17:183–204CrossRefGoogle Scholar
  97. Violante A, de Cristofaro A, Rao MA, Gianfreda L (1995) Physicochemical properties of protein-smectite and protein-Al(OH)x-smectite complexes. Clay Miner 30:325–336CrossRefGoogle Scholar
  98. Wang MC (1991) Catalysis of nontronite in phenols and glycine transformations. Clays and Clay Miner 39:202–210CrossRefGoogle Scholar
  99. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and ocean on the Earth 4.4 Gyr ago. Nature 409:175–178CrossRefPubMedGoogle Scholar
  100. Williams LB, Canfield B, Voglesonger KM, Holloway JR (2005) Organic molecules formed in “primordial womb”. Geology 33:913–916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alain Meunier
    • 1
  • Sabine Petit
    • 1
  • Charles S. Cockell
    • 2
  • Abderrazzak El Albani
    • 1
  • Daniel Beaufort
    • 1
  1. 1.HydrASA University of Poitiers, Bât. Sciences Naturelles—FRE 3114 INSU-CNRSPoitiers CedexFrance
  2. 2.CEPSAR, Open University Milton KeynesMilton KeynesUnited Kingdom

Personalised recommendations