Origins of Life and Evolution of Biospheres

, Volume 40, Issue 2, pp 203–213 | Cite as

Defining Life or Bringing Biology to Life

Defining Life

Abstract

In the present, post-genomic times, systemic or holistic approaches to living phenomena are compulsory to overcome the limits of traditional strategies, such as the methodological reductionism of molecular biology. In this paper, we propose that theoretical and philosophical efforts to define life also contribute to those integrative approaches, providing a global theoretical framework that may help to deal with or interpret the huge amount of data being collected by current high-throughput technologies, in this so-called ‘omics’ revolution. We claim that two fundamental notions can capture the core of the living, (basic) autonomy and open-ended evolution, and that only the complementary combination of these two theoretical constructs offers an adequate solution to the problem of defining the nature of life in specific enough—but also encompassing enough—terms. This tentative solution should also illuminate, in its most elementary version, the leading steps towards living beings on Earth.

Keywords

Basic autonomy Open-ended evolution Life definition Systems biology Origin of life 

References

  1. Brandon RN, Burian RM (eds) (1984) Genes, organisms, populations: controversies over the units of selection. MIT/Bradford, Cambridge, MAGoogle Scholar
  2. Buss L (1987) The evolution of individuality. Princeton UP, New JerseyGoogle Scholar
  3. Cleland CE, Chyba CF (2002) Defining ‘life’. Orig Life Evol Biosph 32:387–393CrossRefPubMedGoogle Scholar
  4. Cleland C E, Chyba C F (2007) Does ‘life’ have a definition? In Planets and Life: The Emerging Science of Astrobiology. Woodruff T. Sullivan, III & John A. Baross (eds.), Cambridge University PressGoogle Scholar
  5. Conrad M (1979) Bootstrapping on the adaptive landscape. BioSystems 11:167–182CrossRefPubMedGoogle Scholar
  6. D’Arcy Thompson W (1992 [1917]) On growth and form. Dover (reprint of the 1942 2nd ed)Google Scholar
  7. Dawkins R (1976) The selfish gene. Oxford University Press, New YorkGoogle Scholar
  8. de Duve C (2005a) Singularities. Landmarks on the pathways of life. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. de Duve C (2005b) The onset of selection. Nature 433:581–582CrossRefPubMedGoogle Scholar
  10. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Amer Biol Teach 35:125–129Google Scholar
  11. Dupré J, O’Malley MA (2009) Varieties of living things: life at the intersection of lineage and metabolism. Philosophy and Theory in Biology 1: e003, 1–25Google Scholar
  12. Edelman JB, Denton MJ (2007) The uniqueness of biological self-organization: challenging the Darwinian paradigm. Biol Phil 22:579–601CrossRefGoogle Scholar
  13. Etxeberria A, Umerez J (2006) Organismo y organización en la biología teórica ¿Vuelta al organicismo? Ludus Vitalis 14(26):3–38Google Scholar
  14. Foucault M (1966) Les mots et les choses, Archéologie des sciences humaines, Gallimard, NRF, ParisGoogle Scholar
  15. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: the chemotons. BioSystems 7:15–21CrossRefPubMedGoogle Scholar
  16. Gánti T (1987) The principle of life. OMIKK, BudapestGoogle Scholar
  17. Goodwin B (1994) How the leopard changed its spots: the evolution of complexity. Phoenix, LondonGoogle Scholar
  18. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  19. Gould SJ, Eldredge N (1988) Species selection: its range and power. Nature 334:19CrossRefGoogle Scholar
  20. Joyce GF (1994) Foreword. In: Deamer DW, Fleischaker GR (eds) Origins of life: the central concepts. Jones and Bartlett, Boston, pp xi–xiiGoogle Scholar
  21. Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  22. Kauffman S (2000) Investigations. Oxford University Press, OxfordGoogle Scholar
  23. Kauffman S (2003) Molecular autonomous agents. Phil Trans R Soc Lond A 361:1089–1099CrossRefGoogle Scholar
  24. Keller EF (2000) The century of the gene. Harvard University Press, CambridgeGoogle Scholar
  25. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95(15):8420–8427CrossRefPubMedGoogle Scholar
  26. Laubichler MD, Maienschein J (eds) (2007) From embryology to evo-devo: a history of developmental evolution. MIT, CambridgeGoogle Scholar
  27. Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622CrossRefPubMedGoogle Scholar
  28. Maynard Smith J (1986) The problems of biology. Oxford University Press, OxfordGoogle Scholar
  29. Mayr E (1982) The growth of biological thought. Harvard University Press, CambridgeGoogle Scholar
  30. Morange M (2003) La vie expliquée? 50 ans après la double hélice. Odile Jacob, ParisGoogle Scholar
  31. Moreno A, Ruiz-Mirazo K, Barandiaran X (2010) The impact of the paradigm of complexity on the foundational frameworks of biology and cognitive science. In: Hooker C (ed) Complex Systems. Vol X of the D. Gavia, P. Thagard & J. Woods (eds) Handbook of the Philosophy of Science. Elsevier, pp. 311–333Google Scholar
  32. Moya A, Krosnogor N, Peretó J, Latorre A (2009) Goethe’s dream. Challenges and opportunities for synthetic biology. EMBO Rep 10, S28-S32Google Scholar
  33. Oparin AI (1924) The origin of life. In: Deamer DW, Fleischaker GR (eds) Origins of life. The central concepts. Jones and Bartlett, Boston, pp 31–71, 1994Google Scholar
  34. Oyama S (2002) The nurturing of natures. In: Grunwald A, Gutmann M, Neumann-Held EM (eds) On human nature. Anthropological, biological and philosophical foundations. Studienreihe der Europäischen Akademie. Springer Verlag, New York, pp 163–170Google Scholar
  35. Peretó J, Català J (2007) The renaissance of synthetic biology. Biol Theor 2:128–130CrossRefGoogle Scholar
  36. Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago PressGoogle Scholar
  37. Ruiz-Mirazo K, Etxeberria A, Moreno A, Ibáñez J (2000) Organisms and their place in biology. Theor Biosci 119:43–67Google Scholar
  38. Ruiz-Mirazo K, Moreno A (2010) Basic autonomy as a fundamental step in the synthesis of life. Art Life 10(3):235–259CrossRefGoogle Scholar
  39. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34:323–346CrossRefPubMedGoogle Scholar
  40. Ruiz-Mirazo K, Umerez J, Moreno A (2008) Enabling conditions for open-ended evolution. Biol Phil 23(1):67–85Google Scholar
  41. Ruiz-Mirazo K, Moreno A (2010) New century biology could do with a universal definition of life. In: Terzis G, Arp R (eds) Information and living systems: essays in philosophy of biology. MIT, Cambridge, in pressGoogle Scholar
  42. Salthe S (1993) Development and evolution. MIT, CambridgeGoogle Scholar
  43. Serrano L (2007) Systems biology: promises and challenges. Mol Syst Biol 3:158CrossRefPubMedGoogle Scholar
  44. Sober E, Wilson DS (1994) A critical review of philosophical work on the units of selection problem. Phil Sci 61(4):534–555CrossRefGoogle Scholar
  45. Special issue—Systems Biology (2002) Science 295:1661–1682Google Scholar
  46. von Neumann J (1949 [1966]) Theory of self-reproducing automata. Burks AW (ed). University of Illinois, UrbanaGoogle Scholar
  47. Varela FJ, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. BioSystems 5:187–196CrossRefGoogle Scholar
  48. Vasas V, Szathmáry E, Santos M (2010) Lack of evolvability inself-sustaining autocatalytic networks: A constraint on themetabolism-first path to the origin of life. Proc Natl Acad Sci USA 107:1470–1475CrossRefPubMedGoogle Scholar
  49. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3):967–976CrossRefGoogle Scholar
  50. Weber BH, Depew DJ (1996) Natural selection and self-organization. Biol Phil 11:33–65CrossRefGoogle Scholar
  51. Westerhoff H, Palsson B (2004) The evolution of molecular biology into systems biology. Nature Biotech 22(10):1249–1252CrossRefGoogle Scholar
  52. Williams GC (1966) Adaptation and natural selection. Princeton University Press, PrincetonGoogle Scholar
  53. Wimsatt W (1980) Reductionistic research strategies and their biases in the units of selection controversy. In: Nickles T (ed) Scientific discovery-vol.II: case studies. Reidel, Dordrecht, pp 213–259Google Scholar
  54. Wynne-Edwards VC (1986) Evolution through group selection. Blackwell Scientific, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kepa Ruiz-Mirazo
    • 1
    • 2
  • Juli Peretó
    • 3
    • 4
  • Alvaro Moreno
    • 1
  1. 1.Departamento de Lógica y Filosofía de la Ciencia, Universidad del País Vasco (UPV/EHU)San SebastianSpain
  2. 2.Unidad de Biofísica (CSIC—UPV/EHU)BilbaoSpain
  3. 3.Departament de Bioquímica i Biologia Molecular, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValenciaSpain
  4. 4.CIBER de Epidemiología y Salud PúblicaBarcelonaSpain

Personalised recommendations