EXPOSE, an Astrobiological Exposure Facility on the International Space Station - from Proposal to Flight
- 451 Downloads
- 45 Citations
Abstract
Following an European Space Agency announcement of opportunity in 1996 for ”Externally mounted payloads for 1st utilization phase” on the International Space Station (ISS), scientists working in the fields of astrobiology proposed experiments aiming at long-term exposure of a variety of chemical compounds and extremely resistant microorganisms to the hostile space environment. The ESA exposure facility EXPOSE was built and an operations´ concept was prepared. The EXPOSE experiments were developed through an intensive pre-flight experiment verification test program. 12 years later, two sets of astrobiological experiments in two EXPOSE facilities have been successfully launched to the ISS for external exposure for up to 1.5 years. EXPOSE-E, now installed at the balcony of the European Columbus module, was launched in February 2008, while EXPOSE-R took off to the ISS in November 2008 and was installed on the external URM-D platform of the Russian Zvezda module in March 2009.
Keywords
Astrobiology International space station EXPOSE facility Low earth orbit Space environmentNotes
Acknowledgements
The authors would like to thank ESA for the support of the EXPOSE-E and EXPOSE-R missions and the support of the pre-flight test program for both missions, NASA for guiding Atlantis STS 122 successfully to ISS; Roskosmos for flying PROGRESS 31P safely to the ISS and Kayser-Threde for cooperation during payload development.
References
- Baglioni P, Sabbatini M, Horneck G (2007) Astrobiology experiments in low Earth orbit: Facilities, instrumentation, and results. In: Horneck G, Rettberg P (eds) Complete Course in Astrobiology. Wiley-VCH, Berlin New York, pp 273–320CrossRefGoogle Scholar
- Brack A, Ehrenfreund P, Ortroshchenko V, Raulin F (1999) From interstellar chemistry to terrestrial life. Exposure experiments in Earth orbit. In: Wilson A (ed) Proceedings of the 2nd European Symposium on the Utilisation of the International Space Station, ESTEC, Noordwijk, The Netherlands, 16–18 November 1998, ESA SP-433, pp 455–458Google Scholar
- Cottin H, Coll P, Coscia D, Fray N, Guan YY, Macari F, Raulin F, Rivron C, Stalpor F, Szopa C, Chaput D, Viso M, Bertrand M, Chabin A, Thirkell L, Westall F, Brack A (2008) Heterogeneous solid/gas organic compounds related to comets, meteorites, Titan and Mars: Laboratory and in lower Earth orbit experiments, in Adv. Space Res. 42(12):2019–2035CrossRefGoogle Scholar
- Damasso M, Dachev T, Falzetta G, Giardi MT, Rea G, Zanini A (2009) The Radiation environment observed by Liulin-Photo and R3D-B3 spectrum-dosimeters inside and outside the Foton-M3 spacecraft. Radiat Meas in pressGoogle Scholar
- Demets R, Schulte W, Baglioni P (2005) The past, present and future of Biopan. Adv Space Res 36:311–316CrossRefGoogle Scholar
- Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2:433–436CrossRefPubMedGoogle Scholar
- ESA (2008) Rosetta, chapter 2.10 in ESA’s report to the 37th COSPAR meeting, ESA SP-1312, ESTEC, Noordwijk, The Netherlands, pp. 71–75Google Scholar
- Fehér I, Pálfalvi JK (2008) Depth Dose Distribution Measurements on the Foton-M2 Bio-satellite by TLD Technique. Adv. Space Res 42:1037–1042CrossRefGoogle Scholar
- Fekete A, Rontó G, Hegedüs M, Módos K, Bérces A, Kovács G, Lammer H, Panitz C (2004) Simulation experiments of the effect of space environment on bacteriophage and DNA thin films. Adv Space Res 33:1306–1310CrossRefPubMedGoogle Scholar
- Fekete A, Módos K, Hegedüs M, Kovács G, Rontó G, Péter Á, Lammer H, Panitz C (2005) DNA damage under simulated extraterrestrial conditions in bacteriophage T7. Adv Space Res 36:303–310CrossRefGoogle Scholar
- Hegedüs M, Kovács G, Módos K, Rontó G, Lammer H, Panitz C, Fekete A (2006) Exposure of phage T7 to simulated space environment: The effect of vacuum and UV-C radiation. J. Photochem Photobiol B: Biol 82:94–104CrossRefGoogle Scholar
- Horneck G (1998) Exobiological Experiments in Earth Orbit. Adv Space Res 22:317–326CrossRefGoogle Scholar
- Horneck G, Brack A (1992) Study of the origin, evolution and distribution of life with emphasis on exobiology experiments in Earth orbit. In: Bonting SL (ed) Advances in Space Biology and Medicine, vol 2. JAI Press, Greenwich, CT, pp 229–262CrossRefGoogle Scholar
- Horneck G, Bücker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984a) Microorganisms in the space environment. Science 225:226–228CrossRefPubMedGoogle Scholar
- Horneck G, Bücker H, Dose K, Martens KD, Bieger A, Mennigmann HD, Reitz G, Requardt H, Weber P (1984b) Microorganisms and biomolecules in space environment experiment ES 029 on Spacelab-1. Adv Space Res 4:19–27CrossRefPubMedGoogle Scholar
- Horneck G, Eschweiler U, Rettberg P, Wehner J, Reitz G, Schott J-U, Willimek R, Strauch K, Dose K, Bieger-Dose A, Risi S, Kerz O, Klein A (1994a) Biological responses to extraterrestrial solar UV radiation and space vacuum, RD UVRAD, Sahm P, Keller MH, Schiewe B (eds) Proceedings of the German Spacelab Mission D-2, Norderney, 14–16 March, 1994, Wissenschaftliche Projektführung D2. DLR Köln, GermanyGoogle Scholar
- Horneck G, Bücker H, Reitz G (1994b) Long Term survival of bacterial spores in space. Adv Space Res 14:41–45CrossRefPubMedGoogle Scholar
- Horneck G, Eschweiler U, Reitz G, Wehner J, Willimek R, Strauch K (1995) Biological responses to space: results of the experiment “Exobiological Unit” of ERA on EURECA 1. Adv Space Res 16:105–118CrossRefPubMedGoogle Scholar
- Horneck G, Rettber P, Rabbow E, Strauch W, Seckmeyer G, Facius R, Reitz G, Strauch K, Schott J-U (1996) Biological dosimetry of solar radiation for different simulated ozone column thicknesses. J Photochem Photobiol B: Biol 32:189–196CrossRefGoogle Scholar
- Horneck G, Wynn-Williams DD , Mancinelli RL, Cadet J, Munakata N, Ronto G, Edwards HGM, Hock B, Wänke H, Reitz G, Dachev T, Häder DP, Brillouet C (1999) Biological experiments on the Expose facility of the International Space Station ISS. In: Wilson A (ed) Proceedings of the 2nd European Symposium on the Utilisation of the International Space Station, ESTEC, Noordwijk, The Netherlands, 16–18 November 1998. ESA SP-433, pp 459–468Google Scholar
- Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547CrossRefPubMedGoogle Scholar
- Horneck G, Debus A, Mani P, Spry JA (2007) Astrobiology exploratory missions and planetary protection requirements. In: Horneck G, Rettberg P (eds) Complete Course in Astrobiology. Wiley-VCH, Berlin New York, pp 353–397CrossRefGoogle Scholar
- Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18(17):R729CrossRefPubMedGoogle Scholar
- Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007) Role of DNA repair by non-homologous end joining (NHEJ) in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV and ionizing radiation. J Bacteriol 189:3306–3311CrossRefPubMedGoogle Scholar
- NASA (1999) International Space Station Assembly. National Aeronautics and Space Administration, LG-1999-09-522-HQ. Available via http://teacherlink.ed.usu.edu/tlnasa/pictures/litho/issa/ISSAssembly.pdf
- Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 641 (in press) doi: 10.1016/j.tim.2009.03.004
- Onofri S, Barrecca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109PubMedCrossRefGoogle Scholar
- Pálfalvi JK, Szabó J, Dudás B (2007) Neutron Detection on the Foton-M2 Satellite by a Track Etch Detector Stack. Radiat Prot Dosim 126:590–594CrossRefGoogle Scholar
- Pálfalvi JK, Szabó J, Dudás B, Fehér I, Eördögh I (2008) Cosmic ray detection on the Foton-M2 satellite by a track etch detector stack. Adv Space Res 42:1030–1036CrossRefGoogle Scholar
- Raulin F (2007) Astrobiology of Saturn’s moon Titan. In: Horneck G, Rettberg P (eds) Complete course in astrobiology. Wiley-VCH, Berlin, New York, pp 223–252CrossRefGoogle Scholar
- Reitz G, Facius R, Bilski P, Olko P (2002) Investigation of radiation doses in open space using TLD detectors. Radiat Prot Dosim 100:533–536Google Scholar
- Reitz G, Berger T (2006) The Matroshka facility – dose determination during an EVA. Radiat Prot Dosim 120:442–445CrossRefGoogle Scholar
- Reitz G, Berger T, Bilski P, Facius R, Hajek M, Petrov V, Puchalska M, Zhou D, Bossler J, Akatov Y, Shurshakov V, Olko P, Ptaszkiewicz M, Bergmann R, Fugger M, Vana N, Beaujean R, Burmeister S, Bartlett D, Hager L, Pálfalvi J, Szabó J, O’Sullivan D, Kitamura H, Uchihori Y, Yasuda N, Nagamatsu A, Tawara H, Benton E, Gaza R, McKeever S, Sawakuchi G, Yukihara E, Cucinotta F, Semones E, Zapp N, Miller J, Dettmann J (2009) Astronaut's organ doses as inferred from measurements in a human phantom outside the International Space Station. Rad Res 171:225–235CrossRefGoogle Scholar
- Rettberg P, Eschweiler U, Strauch K, Reitz G, Horneck G, Wänke H, Brack A, Barbier B (2002) Survival of microorganisms in space protected by meteorite material: results of the experiment EXOBIOLOGIE of the PERSEUS mission. Adv Space Res 30:1539–1545CrossRefPubMedGoogle Scholar
- Rettberg P, Rabbow E, Panitz C, Horneck G (2004) Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv Space Res 33:1294–1301CrossRefPubMedGoogle Scholar
- Rontó G, Bérces A, Fekete A, Kovács G, Gróf P, Lammer H (2004) Biological UV dosimeters in simulated space conditions. Adv Space Res 33:1302–1305CrossRefPubMedGoogle Scholar
- Sancho LG, de la Torre R, Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: Results from the 2005 LICHENS experiment. Astrobiology 7:443–454CrossRefPubMedGoogle Scholar
- Scialdone JJ (1983) Shuttle measured contaminant environment and modelling for payloads. NASA-TM-85111, Goddard Space Flight Center, Maryland, USAGoogle Scholar
- Seibert G (1998) ESA´s International Space Station (ISS) utilisation preparation. In: ESA Microgravity News Vol. 11 No. 2, August 1998. Available via http://esapub.esrin.esa.it/microgra/micrv11n2/seiv11n2.htm
- Taylor GR, Spizizen J, Foster BG, Volz PA, Bücker H, Simmons RC, Heimpel AM, Benton EV (1974) A descriptive analysis of the Apollo 16 microbial response to space environment experiment. BioScience 24:505–511CrossRefGoogle Scholar
- Vago JL, Kminek G (2007) Putting together an exobiology mission: The ExoMars example. In: Horneck G, Rettberg P (eds) Complete Course in Astrobiology. Wiley-VCH, Berlin New York, pp 321–351CrossRefGoogle Scholar
- Wilson, A. (ed.) (2003) European Utilization Plan for the International Space Station. ESA SP-1270, ESA/ESTEC, Noordwijk, The NetherlandsGoogle Scholar