Origins of Life and Evolution of Biospheres

, Volume 39, Issue 5, pp 479–493 | Cite as

Toward Homochiral Protocells in Noncatalytic Peptide Systems

Chirality

Abstract

The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network induced, for example, through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.

Keywords

Homochirality Prebiotic chemistry Abiogenesis Protometabolism Proto-cells 

References

  1. Avetisov V-A, Goldanskii V-I (1993) Chirality and the equation of the ‘biological big bang’. Phys Lett A 172:407–410CrossRefGoogle Scholar
  2. Blackmond D-G (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. PNAS 101:5732–5736PubMedCrossRefGoogle Scholar
  3. Boiteau L, et al (2001) Molecular origins of life: peptide prebiotic emergence and evolution through a permanent, cyclic molecular engine (the primary pump). Influence on the emergence of homochirality. In: Proc. first Eur. workshop on Exo-/Astro-biology, vol. 305.Google Scholar
  4. Bonner W-A (1996) The quest for chirality. In: Cline DD (ed) Physical origin of homochirality in life, Santa Monica, California, February 1995. AIP Conference Proceedings, vol. 379. AIP,New YorkGoogle Scholar
  5. Brack A, Spach G (1979) Beta-structures of polypeptides with L- and D-residues. J Mol Evol 13:35–46PubMedCrossRefGoogle Scholar
  6. Berclaz N, Müller M, Walde P, Luisi P-L (2001a) Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064CrossRefGoogle Scholar
  7. Berclaz N, Blöchliger E, Müller M, Luisi P-L (2001b) Matrix effect of vesicle formation as investigated by cryotransmission electron microscopy. J Phys Chem B 105:1065–1071CrossRefGoogle Scholar
  8. Brandenburg A, Multamäki T (2004) How long can left and right handed life forms coexist?. Int J Astrobiol 3:209–219CrossRefGoogle Scholar
  9. Brandenburg A, Lehto H-J, Lehto K-M (2007) Homochirality in an early peptide world. Astrobio 7:725–732CrossRefGoogle Scholar
  10. Bywater R-P, Conde–Frieboes K (2005) Did life begin on the beach?. Astrobio 5:568–574CrossRefGoogle Scholar
  11. Castelvecchi D (2007) Alien pizza, anyone? Biochemistry may have taken a different turn on other worlds. Sci News 172:107CrossRefGoogle Scholar
  12. Commeyras A, et al (2002) Prebiotic synthesis of sequential peptides on the hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polymer Int 51:661–665CrossRefGoogle Scholar
  13. Cotterill R (2002) Biophysics: an introduction, J. Wiley, ChichesterGoogle Scholar
  14. Deamer D (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrites. Nature 317:792–794CrossRefGoogle Scholar
  15. Deamer D, Dworkin J-P, Sandford S-A, Bernstein M-P, Allamandola L-J (2002) The first cell membranes. Astrobio 2:371–381CrossRefGoogle Scholar
  16. Deamer D, Dworkin J (2005) Chemistry and physics of primitive membranes. Top Curr Chem 259:1–27CrossRefGoogle Scholar
  17. Dunitz JD (1996) Symmetry arguments in chemistry. PNAS 93:14260–14266PubMedCrossRefGoogle Scholar
  18. Fishkis M (2007) Steps towards the formation of a protocell: the possible role of short peptides. Orig Life Evol Biosph 37:537–553PubMedCrossRefGoogle Scholar
  19. Fox S (1973) Molecular evolution to the first cells. Pure Appl Chem 34:641–669PubMedCrossRefGoogle Scholar
  20. Fox S (1980) Metabolic microspheres. Die Naturwissenschaften 67:378PubMedCrossRefGoogle Scholar
  21. Fox S, et al. (1995) Experimental retracement of the origins of a protocell. J Biol Phys 20:17CrossRefGoogle Scholar
  22. Frank F-C (1953) On spontaneous asymmetric catalysis. Biochim Biophys Acta 11:459–463PubMedCrossRefGoogle Scholar
  23. Gleiser M, Thorarinson J (2006) Prebiotic homochiralirty as a critical phenomenon. Orig Life Evol Biosph 36:501–505PubMedCrossRefGoogle Scholar
  24. Gleiser M (2007) Asymmetric spatiotemporal evolution of prebiotic homochirality. Orig Life Evol Biosph 37:235–251PubMedCrossRefGoogle Scholar
  25. Gleiser M, Thorarinson J, Walker S-I (2008) Punctuated chirality. Orig Life Evol Biosph. arXiv:astro-ph/0802.1446
  26. Gleiser M, Walker S-I (2008) An extended model for the evolution of prebiotic homochirality: a bottom-up approach to the origins of life. Orig Life Evol Biosph 38:293–315PubMedCrossRefGoogle Scholar
  27. Gunton J-D, San Miguel M, Sahni P-S (1983) In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 8. Academic, LondonGoogle Scholar
  28. Huber M, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670PubMedCrossRefGoogle Scholar
  29. Huber M, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938PubMedCrossRefGoogle Scholar
  30. Joyce G-F et al (1984) Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310:602PubMedCrossRefGoogle Scholar
  31. Joyce G-F (1991) The rise and fall of the RNA world. New Biol 3:399–407PubMedGoogle Scholar
  32. Kondepudi D-K, Nelson G-W (1983) Chiral symmetry breaking in nonequilibrium systems. Phys Rev Lett 50:1023–1026CrossRefGoogle Scholar
  33. Lazcano A, Miller S (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798PubMedCrossRefGoogle Scholar
  34. Langer J-S (1992) An introduction to the kinetics of first-order phase transitions. In: Godrèche C (ed) Solids far from equilibrium. Cambridge University Press, CambridgeGoogle Scholar
  35. Lathe R (2004) Fast tidal cycling and the origin of life. Icarus 168:18–22CrossRefGoogle Scholar
  36. Lathe R (2005) Tidal chain reaction and the origin of replicating biopolymers. Int J Astrobiol 4:19–31CrossRefGoogle Scholar
  37. Leman L, Orgel L, Ghadiri M (2004) Carbonyl-sulfide-mediated prebiotic formation of peptides. Science 306:283PubMedCrossRefGoogle Scholar
  38. Lonchin S, Luisi P-L, Walde P, Robinson B-H (1999) A matrix effect in mixed phospholipid/fatty acid vesicle formation. J Phys Chem B 103:10910CrossRefGoogle Scholar
  39. Meierhenrich UJ et al (2004) Identification of diamino acids in the Murchison meteorite. PNAS 101:9182–9186PubMedCrossRefGoogle Scholar
  40. Miller S-L (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351CrossRefGoogle Scholar
  41. Monnard P-A, Deamer D (2002) Membrane self-assembly processes: steps toward the first cellular life. Anat Rec 268:196–207PubMedCrossRefGoogle Scholar
  42. Morowitz H-J, Heinz B, Deamer D (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18:281–287PubMedCrossRefGoogle Scholar
  43. Plasson R, Bersini H, Commeyras A (2004) Recycling frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci 101:16733PubMedCrossRefGoogle Scholar
  44. Plasson R, Bersini H (2008) Energetic and entropic analysis of mirror symmetry breaking process in recycled micro-reversible chemical system. arXiv:q-bio/0804.4834
  45. Rasmussen S et al (2004) Transitions from nonliving to living matter. Science 303:963–965PubMedCrossRefGoogle Scholar
  46. Reches M, Gazit E (2004) Formation of closed-cage nanostructures by self-assembly of aromatic peptides. Nano Lett 4:581–585CrossRefGoogle Scholar
  47. Reches M, Gazit E (2006) Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Phys Biol 3:S10–S19CrossRefGoogle Scholar
  48. Robertson M-P, Miller S-L (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774PubMedCrossRefGoogle Scholar
  49. Rode B-M (1999) Peptides and the origin of life. Peptides 20:773–786PubMedCrossRefGoogle Scholar
  50. Saito Y, Hyuga H (2005) Chirality selection in crystallization. J Phys Soc Jpn 74:535–537CrossRefGoogle Scholar
  51. Saito Y, Hyuga H (2005) Chirality selection in open flow systems and in polymerization. J Phys Soc Jpn 74:1629–1635CrossRefGoogle Scholar
  52. Sandars P-G-H (2003) A toy model for the generation of homochirality during polymerization. Orig Life Evol Biosph 33:575–587PubMedCrossRefGoogle Scholar
  53. Santoso S, Hwang W, Hartman H, Zhang S (2002) Self–assembly of surfactant–like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2:687–691CrossRefGoogle Scholar
  54. Segrè D, et al. (2002) The lipid world. Orig Life Evol Biosph 31:119–145CrossRefGoogle Scholar
  55. Shen C, Lascano A, Oro J (1990) The enhancement activities of histidyl–histidine in some prebiotic reactions. J Mol Evol 31:445–452PubMedCrossRefGoogle Scholar
  56. Smith R-M, Hanson D-E (1998) The pH-rate profile for the hydrolysis of a peptide bond. J Am Chem Soc 120:8910–8913CrossRefGoogle Scholar
  57. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiometric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  58. Szostak J-W, Bartel D-P, Luisi P-L (2001) Synthesizing life. Nature 409:387–390PubMedCrossRefGoogle Scholar
  59. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201PubMedCrossRefGoogle Scholar
  60. Wattis J-A, Coveney P-V (2005) Symmetry-breaking in chiral polymerization. Orig Life Evol Biosph 35:243–273PubMedCrossRefGoogle Scholar
  61. Welch CJ, Lunine JI (2001) Challenges and approaches to the robotic detection of enantioenrichment on Saturn’s moon, Titan. Enantiomer 6:69–81PubMedGoogle Scholar
  62. Vauthey S, et al (2002) Molecular self-assmebly of surfactant-like peptides to form nanotubes and nanovesicles. PNAS 99:5355–5360PubMedCrossRefGoogle Scholar
  63. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94:065504PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations