Origins of Life and Evolution of Biospheres

, Volume 38, Issue 6, pp 517–533 | Cite as

The Most Conserved Genome Segments for Life Detection on Earth and Other Planets

  • Thomas A. Isenbarger
  • Christopher E. Carr
  • Sarah Stewart Johnson
  • Michael Finney
  • George M. Church
  • Walter Gilbert
  • Maria T. Zuber
  • Gary Ruvkun
Astrobiolgy

Abstract

On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

Keywords

Polymerase chain reaction DNA RNA Ribosome Panspermia Mars 

Supplementary material

11084_2008_9148_MOESM1_ESM.pdf (29 kb)
ESM 1(29 KB)
11084_2008_9148_MOESM2_ESM.xls (174 kb)
ESM 2(174 KB)

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Anderson DL, Miller WF, Latham GV et al (1977) Seismology on Mars. J Geophys Res 82:4524–4546CrossRefGoogle Scholar
  3. Barns SM, Fundyga RE, Jeffries MW et al (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613PubMedCrossRefGoogle Scholar
  4. Biemann K, Oro J, Toulmin P et al (1977) The search for organic substances and inorganic volatile compounds in the surface of Mars. J Geophys Res (Scientific results of the Viking project) 82:4641–4658CrossRefGoogle Scholar
  5. Bray N, Pachter L (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699PubMedCrossRefGoogle Scholar
  6. Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig life evol biosph 35:537–554PubMedCrossRefGoogle Scholar
  7. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072PubMedCrossRefGoogle Scholar
  8. Donahue TM (1995) Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust. Nature 374:432–434PubMedCrossRefGoogle Scholar
  9. Eigen M, Lindemann BF, Tietze M et al (1989) How old is the genetic code? statistical geometry of tRNA provides an answer. Science 244:673–679PubMedCrossRefGoogle Scholar
  10. Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268PubMedCrossRefGoogle Scholar
  11. Farmer JD (1996) Hydrothermal systems on Mars: An assessment of present evidence. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley & Sons, Chichester, pp 273–295CrossRefGoogle Scholar
  12. Fox GE, Stackebrandt E, Hespell RB et al (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedCrossRefGoogle Scholar
  13. Friedmann EI, Ocampo-Friedmann R (1984) The Antarctic cryptoendolithic ecosystem: relevance to exobiology. Orig Life 14:771–776PubMedCrossRefGoogle Scholar
  14. Fry NK, Fredrickson JK, Fishbain S et al (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol 63:1498–1504PubMedGoogle Scholar
  15. Giovannoni SJ, Britschgi TB, Moyer CL et al (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63PubMedCrossRefGoogle Scholar
  16. Gladman BJ, Burns JA (1996) Mars meteorite transfer: simulation. Science 274:161–165PubMedCrossRefGoogle Scholar
  17. Gladman BJ, Burns JA, Duncan M et al (1996) The exchange of impact ejecta between terrestrial planets. Science 271:1387–1392CrossRefGoogle Scholar
  18. Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18(6):1143–1146PubMedGoogle Scholar
  19. Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679–716PubMedCrossRefGoogle Scholar
  20. Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143PubMedCrossRefGoogle Scholar
  21. Harris JK, Kelley ST, Spiegelman GB et al (2003) The genetic core of the universal ancestor. Genome Res 13:407–412PubMedCrossRefGoogle Scholar
  22. Horneck G, Bucker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45PubMedCrossRefGoogle Scholar
  23. Horneck G, Stöffler D, Ott S et al (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8(1):17–44PubMedCrossRefGoogle Scholar
  24. Isenbarger TA, Finney M, Ríos-Velázquez C et al (2008) Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol 74(3):840–849PubMedCrossRefGoogle Scholar
  25. Iyer LM, Leipe DD, Koonin EV et al (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31PubMedCrossRefGoogle Scholar
  26. Kerr ID (2002) Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta 1561:47–64PubMedCrossRefGoogle Scholar
  27. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136PubMedCrossRefGoogle Scholar
  28. Leamon J, Braverman M, Rothberg J (2007) High-throughput, massively parallel DNA sequencing technology for the era of personalized medicine. Gene Therapy and Regulation 3:15–31CrossRefGoogle Scholar
  29. Leshin LA (2000) Implications for the origin and history of water on Mars from analyses of martian meteorite QUE94201. Geophys Res Lett 27:2017–2020CrossRefGoogle Scholar
  30. Letunic I, Bork P (2007) Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1):127–128PubMedCrossRefGoogle Scholar
  31. Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13PubMedCrossRefGoogle Scholar
  32. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCrossRefGoogle Scholar
  33. Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335PubMedCrossRefGoogle Scholar
  34. Melosh HJ (1988) The rocky road to panspermia. Nature 332:687–688PubMedCrossRefGoogle Scholar
  35. Melosh HJ (1993) Blasting rocks off planets. Nature 363:498CrossRefGoogle Scholar
  36. Mileikowsky C, Cucinotta FA, Wilson JW et al (2000) Natural transfer of viable microbes in space. Icarus 145:391–427PubMedCrossRefGoogle Scholar
  37. O’Neill MP, Eady EA, Radford A et al (1995) The use of PCR to isolate a putative ABC transporter from Saccharopolyspora erythraea. FEMS Microbiol Lett 131:189–195PubMedCrossRefGoogle Scholar
  38. Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16PubMedCrossRefGoogle Scholar
  39. Picard FJ, Ke D, Boudreau DK et al (2004) Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J Clin Microbiol 42:3686–3695PubMedCrossRefGoogle Scholar
  40. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  41. Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759PubMedCrossRefGoogle Scholar
  42. Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41PubMedCrossRefGoogle Scholar
  43. Schneider E, Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22:1–20PubMedCrossRefGoogle Scholar
  44. Shendure J, Mitra RD, Varma C et al (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–44PubMedCrossRefGoogle Scholar
  45. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics. doi: 10.1186/1471-2105-4-41
  46. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedCrossRefGoogle Scholar
  47. Wall L, Schwartz RL, Christiansen T (1996) Programming perl. a nutshell handbook. O’Reilly Inc., Sebastopol, CaliforniaGoogle Scholar
  48. Ward-Rainey N, Rainey FA, Stackebrandt E (1997) The presence of a dnaK (HSP70) multigene family in members of the orders Planctomycetales and Verrucomicrobiales. J Bacteriol 179:6360–6366PubMedGoogle Scholar
  49. Warren L, Bryder D, Weissman IL et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103:17807–17812PubMedCrossRefGoogle Scholar
  50. Weiss BP, Kirschvink JL, Baudenbacher FJ et al (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science 290:791–795PubMedCrossRefGoogle Scholar
  51. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  52. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  53. Yusupov MM, Yusupova GZ, Baucom A et al (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896PubMedCrossRefGoogle Scholar
  54. Zhang L, Cui X, Schmitt K et al (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 89:5847–5851PubMedCrossRefGoogle Scholar
  55. Zuber MT, Smith DE, Solomon SC et al (1998) Observations of the north polar region of Mars from the Mars orbiter laser altimeter. Science 282:2053–2060PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Thomas A. Isenbarger
    • 1
  • Christopher E. Carr
    • 2
  • Sarah Stewart Johnson
    • 2
  • Michael Finney
    • 1
  • George M. Church
    • 3
  • Walter Gilbert
    • 4
  • Maria T. Zuber
    • 2
  • Gary Ruvkun
    • 1
  1. 1.Department of Molecular Biology, Massachusetts General Hospital, and Microbial Sciences InitiativeHarvard UniversityCambridgeUSA
  2. 2.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of GeneticsHarvard Medical SchoolCambridgeUSA
  4. 4.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations