Origins of Life and Evolution of Biospheres

, Volume 38, Issue 6, pp 499–508

Punctuated Chirality

  • Marcelo Gleiser
  • Joel Thorarinson
  • Sara Imari Walker
Origins of Homochirality

Abstract

Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

Keywords

Homochirality Prebiotic chemistry Origin of life Early planetary environments 

References

  1. Bailey J (1998) Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281:672–674CrossRefGoogle Scholar
  2. Bakasov A, Ha T-K, Quack M (1998) Ab initio calculation of molecular energies including parity violating interactions. J Chem Phys 109:7263–7285CrossRefGoogle Scholar
  3. Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci U S A 101:5732–5736PubMedCrossRefGoogle Scholar
  4. Bonner WA (1996) The quest for chirality. In: Cline DD (ed) Physical origin of homochirality in life, AIP Conference Proceedings 379, February 1995. Santa Monica, California. AIP, New YorkGoogle Scholar
  5. Brandenburg A, Multamäki T (2004) How long can left and right handed life forms coexist? Int J Astrobiol 3:209–219CrossRefGoogle Scholar
  6. Cataldo F, Brucato JR, Keheyan Y (2005) Chirality in prebiotic molecules and the phenomenon of photo- and radioracemization. J Phys Conf Series 6:139–148CrossRefGoogle Scholar
  7. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132PubMedCrossRefGoogle Scholar
  8. Cline DB (ed) (1996) Physical origins of homochirality in life. American Institute of Physics, New YorkGoogle Scholar
  9. Cohen J (1995) Getting all turned around over the origins of life on earth. Science 267:1265–1266PubMedCrossRefGoogle Scholar
  10. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol Acta 4:59–69 (Suppl)Google Scholar
  11. Cronin JR, Pizzarello S (1986) Amino acids of the Murchinson meteorite. Geochim Cosmochim Acta 50:2419–2427PubMedCrossRefGoogle Scholar
  12. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955PubMedCrossRefGoogle Scholar
  13. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology, Ch. 5. Freeman Cooper, San FranciscoGoogle Scholar
  14. Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268PubMedCrossRefGoogle Scholar
  15. Fitz D, Reiner H, Plankensteiner K, Rode BM (2007) Possible origins of biohomochirality. Curr Chem Biol 1:41–52CrossRefGoogle Scholar
  16. Frank FC (1953) On spontaneous asymmetric catalysis. Biochim Biophys Acta 11:459–463PubMedCrossRefGoogle Scholar
  17. Gleiser M (2007) Asymmetric spatiotemporal evolution of prebiotic homochirality. Orig Life Evol Biosph 37:235–251PubMedCrossRefGoogle Scholar
  18. Gleiser M, Thorarinson J (2006) Prebiotic homochiralirty as a critical phenomenon. Orig Life Evol Biosph 36:501–505PubMedCrossRefGoogle Scholar
  19. Gleiser M, Walker SI (2008) An extended model for the evolution of prebiotic homochirality: a bottom-up approach to the origin of life. Orig Life Evol Biosph 38:293–315PubMedCrossRefGoogle Scholar
  20. Kminek G, et al (2000) F. MOD: an organic detector for the future robotic exploration of Mars. Planet Space Sci 48:1087–1091CrossRefGoogle Scholar
  21. Kondepudi DK, Nelson GW (1985) Weak neutral currents and the origin of biomolecular chirality. Nature 314:438–441CrossRefGoogle Scholar
  22. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976PubMedCrossRefGoogle Scholar
  23. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798PubMedCrossRefGoogle Scholar
  24. Nielsen PE (1996) Peptide nucleic acid (PNA). Implications for the origin of the genetic material and homochirality of life. In: Cline DB (ed) Physical origin of homochirality in life, Ch. 7. American Institute of Physics, New YorkGoogle Scholar
  25. Pasteur L (1848) Recherches sur les relations qui peuvent exister entre la forme crystalline et la composition chimique, et le sens de la polarization rotatoire. Ann Chim Phys 24:442–459Google Scholar
  26. Sandars PGH (2003) A toy model for the generation of homochirality during polymerization. Orig Life Evol Biosph 33:575–587PubMedCrossRefGoogle Scholar
  27. Soai K, Shibata T, Choji K, Morioka H (1995) Asymmetric autocatalysis and amplification of enantiometric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  28. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94:065504PubMedCrossRefGoogle Scholar
  29. Wattis JA, Coveney PV (2005) Symmetry-breaking in chiral polymerization. Orig Life Evol Biosph 35:243–273PubMedCrossRefGoogle Scholar
  30. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence form detrital zircons for the existence of continental crust and oceans on the earth 4.4 gyr ago. Nature 409:175–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marcelo Gleiser
    • 1
  • Joel Thorarinson
    • 1
  • Sara Imari Walker
    • 1
  1. 1.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations