Origins of Life and Evolution of Biospheres

, Volume 38, Issue 4, pp 355–369

Habitability of Enceladus: Planetary Conditions for Life

  • Christopher D. Parkinson
  • Mao-Chang Liang
  • Yuk L. Yung
  • Joseph L. Kirschivnk
ASTROBIOLOGY

Abstract

The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus’ plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus’ plume particles. Microphysical cloud modeling of Enceladus’ plume shows that the particles originate from a region of Enceladus’ near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus’ tiger stripes, which would indicate extremely high temperatures (∼250–273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m−2 and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.

Keywords

Astrobiology Geochemical cycle Habitability Icy moons Microphysical cloud physics Plume Tectonic processes Tiger stripes 

References

  1. Allamandola LJ, Sandford SA, Valero GJ (1988) Photochemical and thermal evolution of interstellar/pre-cometary ice analogs. Icarus 76:225–252CrossRefGoogle Scholar
  2. Barr AC (2004) Convection in ice I with non-Newtonian rheology: application to the icy Galilean satellites, Ph.D. thesis, University of Colorado, Chapter 5Google Scholar
  3. Barr AC, McKinnon WB (2007) Convection in Enceladus’ ice shell: conditions for initiation. Geophys Res Lett 34:9 2006GL028799CrossRefGoogle Scholar
  4. Barr AC, Pappalardo RT (2003) Numerical simulations of non-Newtonian convection in ice: application to Europa, in Lunar and Planetary Science Conference, Abs. [CD-ROM] Lunar and Planetary Science Institute, Houston TX, abstract no. 1477Google Scholar
  5. Barr AC, Nimmo F, Pappalardo RT, Gaidos E (2002) Rise of deep melt into Ganymede’s ocean and implications for astrobiology, in Lunar and Planetary Institute Conference Abstracts, p. 1545Google Scholar
  6. Brown RH, Clark RN, Buratti BJ, Cruikshank DP, Barnes JW, Mastrapa RME, Bauer J, Newman S, Momary T, Baines KH, Bellucci G, Capaccioni F, Cerroni P, Combes M, Coradini A, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, Sotin C (2006) Composition and physical properties of Enceladus’ surface. Science 311:1425–1428PubMedCrossRefGoogle Scholar
  7. Chyba CF, Hand K (2001) Life without photosynthesis. Science 292:2026–2027PubMedCrossRefGoogle Scholar
  8. Chyba CF, Phillips CB (2002) Europa as an abode of life. Orig Life Evol Biosph 32:47–67PubMedCrossRefGoogle Scholar
  9. Colbeck SC (1998) Sintering in a dry snow cover. J Appl Physi 84:4585CrossRefGoogle Scholar
  10. Collins GC, Goodman JC (2007) Enceladus’ south polar sea. Icarus 189:72–82CrossRefGoogle Scholar
  11. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. Cambridge University Press, Cambridge, p 502Google Scholar
  12. Gaidos EJ, Nealson KH, Kirschvink JL (1999) Life in ice-covered oceans. Science 284:1631–1633PubMedCrossRefGoogle Scholar
  13. Greeley R et al (2004) Jupiter: The planet, satellites, and Magnetosphere. Cambridge University Press, Cambridge, pp. 329–362Google Scholar
  14. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus’ water vapor plume. Science 311:1422–1425PubMedCrossRefGoogle Scholar
  15. Ingersoll AI, Porco CC, West RA, Mitchell C, Turtle EP (2006) American Geophysical Union, Fall Meeting abstract # P22-B-04Google Scholar
  16. Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19,359–19,364Google Scholar
  17. Kargel J (2006) Enceladus: cosmic gymnast, volatile miniworld. Science 311:1389PubMedCrossRefGoogle Scholar
  18. Kieffer SW, Lu X, Bethke CM, Spencer JR, Marshak S, Navrotsky A (2006) A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–1766PubMedCrossRefGoogle Scholar
  19. Kirschvink JL, Weiss BP (2002) Mars, panspermia, and the origin of life: where did it all begin? Palaeontol Electronica 4(2):8–15Google Scholar
  20. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343PubMedCrossRefGoogle Scholar
  21. LeBlanc F, Johnson RE, Brown ME (2002) Europa’s sodium atmosphere: an ocean source? Icarus 159:132–144 doi:10.1006/icar.2002.6934 CrossRefGoogle Scholar
  22. Loeffler MJ et al (2006) Enceladus: a source of nitrogen and an explanations for the water vapor plume observed by Cassini. Astrophys J 649:L133–L136CrossRefGoogle Scholar
  23. Matson DL, Castillo JC, Lunine J, Johnson TV (2007) Enceladus’ plume: compositional evidence for a hot interior. Icarus 187:569–573CrossRefGoogle Scholar
  24. McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res 104:30,729–30,742CrossRefGoogle Scholar
  25. Moses JI, Lellouch E, Bezard B, Gladstone GR, Feuchtgruber H, Allen M (2000) Photochemistry of Saturn’s atmosphere. Icarus 145:166CrossRefGoogle Scholar
  26. Mousis O, Gautier D, Bockelee-Morvan D (2002) An evolutionary turbulent model of Saturn’s subnebula: implications for the origin of the atmosphere of Titan. Icarus 156:162–175CrossRefGoogle Scholar
  27. Newman SF, Buratti BJ, Brown RH, Jaumann R, Bauer J, Momary T (2007) The search for hydrogen peroxide on Enceladus, 38th Lunar and Planetary Science Conference abstract no. 1338, 1769Google Scholar
  28. Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res 107:5021 doi:10.1029/2000JE001476 CrossRefGoogle Scholar
  29. Nimmo F, Spencer JR, Pappalardo RT, Mullen ME (2007) Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447:289–291 doi:10.1038/nature05783 PubMedCrossRefGoogle Scholar
  30. Parkinson CD et al (2006) Enceladus: Cassini observations and implications for the search for life (Research Note); Astronomy and Astrophysics, 463:353Google Scholar
  31. Parkinson CD, Liang MC, Hartman H, Hansen CJ, Tinetti G, Meadows V, Kirschvink JL, Yung YL (2007) Astron Astrophys 463:353–357CrossRefGoogle Scholar
  32. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G, Denk T, Wagner R, Roatsch T, Kieffer S, Turtle E, McEwen A, Johnson TV, Rathbun J, Veverka J, Wilson D, Perry J, Spitale J, Brahic A, Burns JA, DelGenio AD, Dones L, Murray CD, Squyres S (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401PubMedCrossRefGoogle Scholar
  33. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196–196PubMedCrossRefGoogle Scholar
  34. Schneider NM, Burger MH, Johnson RE, Kargel JS, Schaller EL, Brown ME (2007) No ocean source for Enceladus’ plumes, 2007, AGU Fall Meeting Abstracts, 8, 2007AGUFM.P11F.08SGoogle Scholar
  35. Spencer JS, Pearl JC, Segura M, Flasar FM, Mamoutkine A, Romani P, Buratti BJ, Hendrix AR, Spilker LJ, Lopes RMC (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405PubMedCrossRefGoogle Scholar
  36. Stempel MM, Barr AC, Pappalardo RT (2005) Model constraints on the opening rates of bands on Europa. Icarus 177:297CrossRefGoogle Scholar
  37. Tian F et al (2006) Monte Carlo simulations of the water vapor plume on Enceladus. Icarus 188:154–161CrossRefGoogle Scholar
  38. Toon OB, Turco RP, Westphal D, Malone R, Liu MS (1988) A multidimensional model for aerosols, description of computational analogs. J Atmos Sci 45:2123–2143CrossRefGoogle Scholar
  39. Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, CambridgeGoogle Scholar
  40. Waite JH, Combi MR, Ip WH, Cravens TE, McNutt RL, Kasprzak W, Yelle R, Luhmann J, Niemann H, Gell D, Magee B, Fletcher G, Lunine J, Tseng WL (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311:1419PubMedCrossRefGoogle Scholar
  41. Zolotov Yu M, Shock EL (2004) A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. J Geophys Res 109:E06003 doi:10.1029/2003JE002194 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher D. Parkinson
    • 1
  • Mao-Chang Liang
    • 2
    • 3
    • 4
  • Yuk L. Yung
    • 2
    • 5
  • Joseph L. Kirschivnk
    • 2
  1. 1.Department of Atmospheric, Oceanic, and Space SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Division of Geological and Planetary ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Research Center for Environmental ChangesAcademia SinicaTaipeiTaiwan
  4. 4.Graduate Institute of AstronomyNational Central UniversityJhongliTaiwan
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations