Origins of Life and Evolution of Biospheres

, Volume 38, Issue 1, pp 87–104 | Cite as

The Interplanetary Exchange of Photosynthesis

Article

Abstract

Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

Keywords

Oxygenic photosynthesis Biogeography Dispersal Endoliths 

References

  1. Adams FC, Spergel DN (2005) Lithopanspermia in star-forming clusters. Astrobiology 5:497–514PubMedCrossRefGoogle Scholar
  2. Arrhenius S (1908) Worlds in the making. Harper, New YorkGoogle Scholar
  3. Benardini JN, Sawyer J, Venkateswaran K, Nicholson WL (2003) Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology 3:709–717PubMedCrossRefGoogle Scholar
  4. Bhaya D, Bianco NR, Bryant D, Grossman A (2000) Type IV biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37:941–951PubMedCrossRefGoogle Scholar
  5. Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci U S A 104:13445–13460Google Scholar
  6. Billi D, Friedmann EI, Hofer KG, Grilli Caiola M, Ocampo-Friedmann R (2000) Ionizing radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492PubMedCrossRefGoogle Scholar
  7. Brack A, Baglioni P, Borruat G, Brandstatter F, Demets R, Edwards HGM, Genge M, Kurat G, Miller MF, Newton EM, Pillinger CT, Roten CA, Wasch E (2002) Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE. Planet Space Sci 50:763–772CrossRefGoogle Scholar
  8. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archean lakes. Science 255:74–77PubMedCrossRefGoogle Scholar
  9. Burchell MJ, Mann JR, Bunch AW, Brando PFB (2001) Survivability of bacteria in hypervelocity impact. Icarus 154:545–547CrossRefGoogle Scholar
  10. Burchell MJ, Mann JR, Bunch AW (2004) Survival of bacteria and spores under extreme shock pressures. Mon Not R Astron Soc 352:1273–1278CrossRefGoogle Scholar
  11. Ceplecha Z, Boarovicka J, Elford WG, Revelle DO, Hawkes RL, Porubcan V, Simek M (1998) Meteor phenomena and bodies. Space Sci Rev 84:327–471CrossRefGoogle Scholar
  12. Clark BC (2001) Planetary interchange of bioactive material: probability factors and implications. Orig Life Evol Biosph 31:185–197PubMedCrossRefGoogle Scholar
  13. Cockell CS, Osinski GR (2007) Impact-induced impoverishment and transformation of a sandstone habitat for lithophytic microorganisms. Meteorit Planet Sci (in press)Google Scholar
  14. Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteorit Planet Sci 37:1287—1298CrossRefGoogle Scholar
  15. Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiology 5:127–140PubMedCrossRefGoogle Scholar
  16. Cockell CS, Brack A, Wynn-Williams DD, Baglioni P, Brandstätter F, Demets R, Edwards HGM, Gonstal AL, Kurat G, Lee PC, Osinski GR, Pearce DA, Pillinger, JM, Roten CA, Sancisi-Frey S (2007) Interplanetary transfer of photosynthesis—an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 7:1–9PubMedCrossRefGoogle Scholar
  17. Coulson SG (2006) Meteoroids: a landing capsule for panspermia. Int J Astrobiol 5:307–312CrossRefGoogle Scholar
  18. De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–189CrossRefGoogle Scholar
  19. de Vera JP, Horneck G, Rettberg P, Ott S (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Sci 33:1236–1243CrossRefGoogle Scholar
  20. Ehrenreich D, Tinetti G, des Etangs AL, Vidal-Madjar A, Selsis F (2006) The transmission spectrum of Earth-size transiting planets. Astron Astrophys 448:379–393CrossRefGoogle Scholar
  21. Fajardo-Cavaros P, Link L, Melosh HJ, Nicholson WL (2005) Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for lithopanspermia. Astrobiology 5:726–736CrossRefGoogle Scholar
  22. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235CrossRefGoogle Scholar
  23. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  24. Fritz J, Artemieva NA, Greshake A (2005) Ejection of Martian meteorites. Meteorit Planet Sci 9–10:1393–1412Google Scholar
  25. Gladman BJ (1997) Destination Earth: Martian meteorite delivery. Icarus 130:228–246CrossRefGoogle Scholar
  26. Gladman BJ, Burns JA, Duncan M, Lee P, Levison HF (1996) The exchange of impact ejecta between the terrestrial planets. Science 271:1387–1392CrossRefGoogle Scholar
  27. Gladman B, Dones L, Levison HF, Burns JA (2005) Impact seeding and reseeding in the inner solar system. Astrobiology 5:483–496PubMedCrossRefGoogle Scholar
  28. Grilli Caiola M, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315–322Google Scholar
  29. Hitchman RB, Jones HLJ (2000) The role of mixotrophic protists in the population dynamics of the microbial food web in a small artificial pond. Freshw Biol 43:231–241CrossRefGoogle Scholar
  30. Horneck G, Bücker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984) Microorganisms in the space environment. Science 225:226–228PubMedCrossRefGoogle Scholar
  31. Horneck G, Bücker H, Retiz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45PubMedCrossRefGoogle Scholar
  32. Horneck G, Stöffler D, Eschwelier U, Hornemann U (2001a) Bacterial spores survive simulated meteorite impact. Icarus 149:285–290CrossRefGoogle Scholar
  33. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001b) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547PubMedCrossRefGoogle Scholar
  34. Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera J-P, Fritz J, Schade S, Artemieva NA (2007) Microbial rock inhabitants survive hypervelocity impacts on Mars-like planets: first phase of lithopanspermia experimentally tested. Astrobiology (in press)Google Scholar
  35. Hoyle F, Wickramasinghe NC (1999) Comets—a vehicle for panspermia. Astrophys Planet Sci 268:333–341CrossRefGoogle Scholar
  36. Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565PubMedCrossRefGoogle Scholar
  37. Jakosky BM, Shock EL (1998) The biological potential of Mars, early Earth, and Europa. J Geophys Res 103:19359–19364PubMedCrossRefGoogle Scholar
  38. Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance and primary production. Deep-Sea Res 33:881–892CrossRefGoogle Scholar
  39. Lunine JI (2004) The formation and detection of extrasolar habitable worlds. J Phys 121:259–268Google Scholar
  40. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  41. Mancinelli RL, Klovstad M (2000) Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet Space Sci 48:1093–1097CrossRefGoogle Scholar
  42. Mancinelli RL, White MR, Rothschild LJ (1998) Biopan-survival I: Exposure of the osmophiles Synechococcus sp (Nageli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334CrossRefGoogle Scholar
  43. Mastrapa RME, Glanzberg H, Head JN, Melosh HJ, Nicholson WL (2001) Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci Lett 189:1–9CrossRefGoogle Scholar
  44. Matthes U, Turner SJ, Larson DW (2001) Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Int J Plant Sci 162:263–270CrossRefGoogle Scholar
  45. Melosh HJ (1984) Impact ejection, spallation, and the origin of meteorites. Icarus 59:234–260CrossRefGoogle Scholar
  46. Melosh HJ (2003) Exchange of meteorites (and life?) between stellar systems. Astrobiology 3:207–215PubMedCrossRefGoogle Scholar
  47. Mileikowsky C, Cucinotta F, Wilson JW, Gladman B, Horneck G, Lindgren L, Melosh HJ, Rickman H, Valtonen MJ, Zheng JQ (2000) Natural transfer of viable microbes in space Part I: From Mars to Earth and Earth to Mars. Icarus 145:391–427PubMedCrossRefGoogle Scholar
  48. Mulkidjanian AY, Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis—a primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynth Res 51:27–42CrossRefGoogle Scholar
  49. Napier WM (2004) A mechanism for interstellar panspermia. Mon Not R Astron Soc 348:46–51CrossRefGoogle Scholar
  50. Nicholson WL, Schuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spacecraft. Mutat Res 571:249–264PubMedGoogle Scholar
  51. Raven JA, Cockell CS (2006) Influence on photosynthesis of starlight, moonlight, planetlight and light pollution (Reflections on photosynthetically active radiation in the universe). Astrobiology 6:668–675PubMedCrossRefGoogle Scholar
  52. Raven JA, Wolstencroft RD (2004) Constraints on photosynthesis on Earth and Earth-like planets. In: Norris R, Stootman F (eds) Proceedings of the IAU Symposium 213—Bioastronomy 2002: life among the stars. Astronomical Society of the Pacific, San Francisco, pp 305–308Google Scholar
  53. Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc U K 80:1–25CrossRefGoogle Scholar
  54. Raymond SN, Quinn T, Lunine JI (2007) High-resolution simulations of the final assembly of earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84PubMedCrossRefGoogle Scholar
  55. Reisenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66:620–626CrossRefGoogle Scholar
  56. Rettberg P, Eschweiler U, Strauch K, Reitz G, Horneck G, Wanke H, Brack A, Barbier B (2002) Survival of microorganisms in space protected by meteorite material: results of the experiment ‘EXOBIOLOGIE’ of the PERSEUS mission. Adv Space Res 30:1539–1545PubMedCrossRefGoogle Scholar
  57. Rettberg P, Rabbow E, Panitz C, Horneck G (2004) Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv Space Res 33:1294–1301PubMedCrossRefGoogle Scholar
  58. Roten CA, Gallusser A, Borruat GD, Udry SD, Karamata D (1998) Impact resistance of bacteria entrapped in small meteorites. Bull Soc Vaud Sci Nat 86:1–17Google Scholar
  59. Sancho LG, de la Torre R, Gerda Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454PubMedCrossRefGoogle Scholar
  60. Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP (2003) Survival of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165:253–276PubMedCrossRefGoogle Scholar
  61. Schwartzkopf SH, Mancinelli RL (1991) Germination and growth of wheat in simulated Martian atmospheres. Acta Astron 25:245–247CrossRefGoogle Scholar
  62. Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469PubMedCrossRefGoogle Scholar
  63. Skulachev, VP (1994) Bioenergetics—the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie Van Leeuenhoek Int J Gen Mol Microbiol 65:271–284CrossRefGoogle Scholar
  64. Stöffler D, Horneck G, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera J-P, Fritz J, Artemieva NA (2007) Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus 186:585–588CrossRefGoogle Scholar
  65. Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181CrossRefGoogle Scholar
  66. Tepfer D, Leach S (2006) Plant seeds as model vectors for the transfer of life through space. Astrophys Space Sci 306:69–75CrossRefGoogle Scholar
  67. Thomson W (1871) Presidential address to the British Association for the Advancement of Science. Nature 4:262Google Scholar
  68. Vermeij GJ (1995) Economics, volcanoes and Phanerozoic revolutions. Paleobiology 21:125–152Google Scholar
  69. Wallis MK, Wickramasinghe NC (2004) Interstellar transfer of planetary microbiota. Mon Not R Astron Soc 348:52–61CrossRefGoogle Scholar
  70. Weiss BP, Kirschvink JL, Baudenbacher FJ, Vali H, Peters NT, Macdonald FA, Wikswo JP (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science 290:791–795PubMedCrossRefGoogle Scholar
  71. Wells LE, Armstrong JC, Gonzalez G (2003) Reseeding of early Earth by impacts of returning ejecta during late heavy bombardment. Icarus 162:38–46CrossRefGoogle Scholar
  72. Willis MJ, Ahrens TJ, Bertani LE, Nash CZ (2006) Bugbuster—survivability of living bacteria upon shock compression. Earth Planet Sci Lett 247:185–196CrossRefGoogle Scholar
  73. Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157:535–548CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.CEPSAROpen UniversityMilton KeynesUK

Personalised recommendations