Advertisement

Origins of Life and Evolution of Biospheres

, Volume 37, Issue 4–5, pp 429–432 | Cite as

Question 7: The First Units of Life Were Not Simple Cells

  • Vic NorrisEmail author
  • Axel Hunding
  • Francois Kepes
  • Doron Lancet
  • Abraham Minsky
  • Derek Raine
  • Robert Root-Bernstein
  • K. Sriram
Article

Abstract

Five common assumptions about the first cells are challenged by the pre-biotic ecology model and are replaced by the following propositions: firstly, early cells were more complex, more varied and had a greater diversity of constituents than modern cells; secondly, the complexity of a cell is not related to the number of genes it contains, indeed, modern bacteria are as complex as eukaryotes; thirdly, the unit of early life was an ‘ecosystem’ rather than a ‘cell’; fourthly, the early cell needed no genes at all; fifthly, early life depended on non-covalent associations and on catalysts that were not confined to specific reactions. We present here the outlines of a theory that connects findings about modern bacteria with speculations about their origins.

Keywords

Module Division Composome Hyperstructure Origin of life 

Notes

Acknowledgements

For the support, we thank Genopole®, Evry and the Centre “ETTORE MAJORANA”, Erice.

References

  1. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625PubMedCrossRefGoogle Scholar
  2. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508PubMedCrossRefGoogle Scholar
  3. Hunding A, Kepes F, Lancet D, Minsky A, Norris V, et al (2006) Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 28:399–412PubMedCrossRefGoogle Scholar
  4. Mathieu LG, Sonea S (1995) A powerful bacterial world. Endeavour 19:112–117PubMedCrossRefGoogle Scholar
  5. Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev Mol Cell Biol 3:50–60PubMedCrossRefGoogle Scholar
  6. Norris V (2005) Poly-(R)-3-hydroxybutyrate and the pioneering work of Rosetta Natoli Reusch. Cell Mol Biol (Noisy-le-grand) 51:629–634Google Scholar
  7. Norris V, Madsen MS (1995) Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253:739–748PubMedCrossRefGoogle Scholar
  8. Norris V, Raine DJ (1998) A fission–fusion origin for life. Orig Life Evol Biosph 28:523–537PubMedCrossRefGoogle Scholar
  9. Norris V, Alexandre S, Bouligand Y, Cellier D, Demarty M, et al (1999) Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 81:915–920PubMedCrossRefGoogle Scholar
  10. Norris V, Demarty M, Raine D, Cabin-Flaman A, Le Sceller L (2002) Hypothesis: hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie 84:341–347PubMedCrossRefGoogle Scholar
  11. Norris V, Amar P, Bernot G, Delaune A, Derue C, et al (2004) Questions for cell cyclists. Journal of Biological Physics and Chemistry 4:124–130Google Scholar
  12. Norris V, Cabin A, Zemirline A (2005) Hypercomplexity. Acta Biotheor 53:313–330PubMedCrossRefGoogle Scholar
  13. Norris V, Cabin-Flaman A, den Blaauwen T, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K (2007) A functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71:230–253PubMedCrossRefGoogle Scholar
  14. Raine D, Norris V (2007) Lipid domain interfaces as prebiotic catalysts of peptide bond formation. J Theor Biol 246:176–185PubMedCrossRefGoogle Scholar
  15. Root-Bernstein RS, Dillon PF (1997) Molecular complementarity I: the complementarity theory of the origin and evolution of life. J Theor Biol 188:447–479PubMedCrossRefGoogle Scholar
  16. Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97:4112–4117PubMedCrossRefGoogle Scholar
  17. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vic Norris
    • 1
    • 2
    Email author
  • Axel Hunding
    • 3
  • Francois Kepes
    • 2
  • Doron Lancet
    • 4
  • Abraham Minsky
    • 5
  • Derek Raine
    • 6
  • Robert Root-Bernstein
    • 7
  • K. Sriram
    • 2
  1. 1.AMMIS Laboratory, UMR CNRS 6522University of RouenMont Saint AignanFrance
  2. 2.Epigenomics Project, Genopole®, CNRSEvryFrance
  3. 3.Department of Chemistry, H. C. Orsted Institute C116University of CopenhagenCopenhagenDenmark
  4. 4.Department of Molecular Genetics and the Crown Human Genome CenterWeizmann Institute of ScienceRehovotIsrael
  5. 5.Department of ChemistryWeizmann Institute of ScienceRehovotIsrael
  6. 6.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  7. 7.Department of Physiology, 2174 BPSMichigan State UniversityEast LansingUSA

Personalised recommendations