Origins of Life and Evolution of Biospheres

, Volume 36, Issue 5–6, pp 523–531 | Cite as

About a Formamide-Based Origin of Informational Polymers: Syntheses of Nucleobases and Favourable Thermodynamic Niches for Early Polymers

  • Raffaele Saladino
  • Claudia Crestini
  • Fabiana Ciciriello
  • Giovanna Costanzo
  • Ernesto Di Mauro


Formamide NH2CHO chemistry provides a unitary frame into which several pieces of the origin-of-life puzzle may be adjusted. Synthetic processes were uncovered which, starting from formamide and prebiotically easily available common catalysts, yield all the necessary nucleic bases precursors, including acyclonucleosides. Formamide allows phosphorylations and trans-phosphorylations, favours the micellar aggregation of surfactants and, most importantly, determines conditions in which the formation of nucleic polymers is thermodynamically favoured. In the detected conditions, the phosphoester bonds are more stable in the polymeric than in the monomeric form, thus allowing formation and survival of informational nucleic polymers.


formamide nucleic bases acyclonucleosides informational polymers thermodynamic niches 



This work was supported by the Italian Space Agency, “Genomica Funzionale” Consiglio Nazionale delle Ricerche, BEMM, Centro di Eccellenza di Biologia e Medicina Molecolare, and FIRB, Fondo per gli Investimenti della Ricerca di Base.


  1. Akter MS, Alawi SM (2003) A comparison of micelle formation of ionic surfactants in formamide, in N-methylformamide and in N,N-dimethylformamide. Colloids Surf A 219:281–290CrossRefGoogle Scholar
  2. Darwin F (ed) (1888) The life and letters of Charles Darwin, vol 3. John Murray, London, p 18 (letter to Joseph Hooker)Google Scholar
  3. Delaye L, Lazcano A (2005) Prebiological evolution and the physics of the origin of life. Phys Life Rev 2:47–64CrossRefGoogle Scholar
  4. Forterre P, Confalonieri F, Charbonnier F, Duguet M (1995) Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. Orig Life Evol Biosph 25:235–249PubMedCrossRefGoogle Scholar
  5. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529PubMedCrossRefGoogle Scholar
  6. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251PubMedCrossRefGoogle Scholar
  7. Miller SL, Urey HC, Oro J (1976) Origin of organic compounds on the primitive earth and in meteorites. J Mol Evol 9:59–72PubMedCrossRefGoogle Scholar
  8. Negri R, Costanzo G, Saladino R, Di Mauro E (1996) One-step, one-lane chemical DNA sequencing by N-methylformamide in the presence of metal ions. BioTechniques 21:910–917PubMedGoogle Scholar
  9. Okamoto T, Toshihiko M, Yamada H, Hiroshi I (1972) Purine from formamide. Jpn Kokai Tokkyo Koho 3:1–3Google Scholar
  10. Saladino R, Mincione E, Crestini C, Negri R, Di Mauro E, Costanzo G (1996) Mechanism of degradation of purine nucleosides by formamide. Implications for chemical DNA sequencing procedures. J Am Chem Soc 118:5615–5619CrossRefGoogle Scholar
  11. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253PubMedCrossRefGoogle Scholar
  12. Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R, Di Mauro E (2003) One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. ChemBioChem 4:514–521PubMedCrossRefGoogle Scholar
  13. Saladino R, Crestini C, Costanzo G, Di Mauro E (2004a) Advances in the prebiotic synthesis of nucleic acids bases. Implications for the origin of life. Curr Org Chem 8:1425–1443CrossRefGoogle Scholar
  14. Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004b) Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. ChemBioChem 5:1558–1566PubMedCrossRefGoogle Scholar
  15. Saladino R, Crestini C, Costanzo G, Di Mauro E (2005a) On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. In: Walde P (ed) Topics in current chemistry, “Prebiotic Chemistry”, volume 259. Springer, Berlin, Heidelberg, New York, pp 29–68Google Scholar
  16. Saladino R, Crestini C, Neri V, Brucato JR, Colangeli L, Ciciriello F, Di Mauro E, Costanzo G (2005b) Synthesis and degradation of nucleic Acid components by formamide and cosmic dust analogues. ChemBioChem 6:1368–1374PubMedCrossRefGoogle Scholar
  17. Saladino R, Crestini C, Busiello V, Ciciriello F, Costanzo G, Di Mauro E (2005c) Origin of informational polymers. Differential stability of 3′- and 5′-phosphoester bonds in deoxy monomers and oligomers. J Biol Chem 280:35658–35669PubMedCrossRefGoogle Scholar
  18. Schoffstall AM (1976) Prebiotic phosphorylation of nucleosides in formamide. Orig Life 7:399–412PubMedCrossRefGoogle Scholar
  19. Schoffstall AM, Laing EM (1985) Orig Life 15:141–148Google Scholar
  20. Schoffstall AM, Mahone SM (1988) Formate ester formation in amide solutions. Orig Life Evol Biosph 18:389–396PubMedCrossRefGoogle Scholar
  21. Schoffstall AM, Barto RJ, Ramos DL (1982) Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Orig Life 12:143–151PubMedCrossRefGoogle Scholar
  22. Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171PubMedCrossRefGoogle Scholar
  23. Shirota H, Segawa H (2004) Solvation dynamics of formamide and N,N-dimethylformamide in aerosol OT reverse micelles. Langmuir 20:329–335PubMedCrossRefGoogle Scholar
  24. van Holde KE (1980) The origin of life: a thermodynamic critique in “The origins of life and evolution.” In: Halvorson HO, van Holde KE (eds) The origins of life and evolution. Alan R. Liss, Inc., New York, pp 31–46Google Scholar
  25. Wiegel J, Adams MW (1998) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  • Raffaele Saladino
    • 1
  • Claudia Crestini
    • 2
  • Fabiana Ciciriello
    • 4
  • Giovanna Costanzo
    • 3
  • Ernesto Di Mauro
    • 4
  1. 1.Dipartimento A.B.A.C.Università della TusciaViterboItaly
  2. 2.Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata”RomeItaly
  3. 3.Istituto di Biologia e Patologia MolecolariRomeItaly
  4. 4.Fondazione “Istituto Pasteur-Fondazione Cenci-Bolognetti” c/o Dipartimento di Genetica e Biologia MolecolareUniversità “La Sapienza” di RomaRomeItaly

Personalised recommendations