Origins of Life and Evolution of Biospheres

, Volume 37, Issue 2, pp 189–200 | Cite as

Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions

  • Daria MorozovaEmail author
  • Diedrich Möhlmann
  • Dirk Wagner


Methanogenic archaea from Siberian permafrost complementary to the already well-studied methanogens from non-permafrost habitats were exposed to simulated Martian conditions. After 22 days of exposure to thermo-physical conditions at Martian low- and mid-latitudes up to 90% of methanogenic archaea from Siberian permafrost survived in pure cultures as well as in environmental samples. In contrast, only 0.3%–5.8% of reference organisms from non-permafrost habitats survived at these conditions. This suggests that methanogens from terrestrial permafrost seem to be remarkably resistant to Martian conditions. Our data also suggest that in scenario of subsurface lithoautotrophic life on Mars, methanogenic archaea from Siberian permafrost could be used as appropriate candidates for the microbial life on Mars.


methanogenic archaea permafrost astrobiology life on Mars Mars simulation experiments 



The authors wish to thank the Russian–German team of the Expedition LENA 2004 for enjoyable field work under extreme conditions, in particular Waldemar Schneider for logistic and Günter ‘Molo’ Stoof for technical support (both Alfred Wegener Institute for Polar and Marine Research). Special thanks go to the team of the HUMIDITY-Lab Dr. Roland Wernecke & Partner and Andreas Lorek (German Aerospace Center) as well as to the whole group of simulators (especially Dr. Jelka Ondruschka, Ulrike Pogoda de la Vega, Prof. Dr. Sieglinde Ott, and Dr. Petra Rettberg) for successful cooperation. This research has been supported by Deutsche Forschungsgemeinschaft (German Research Foundation) priority program 1115 “Mars and the terrestrial planets” (WA 1554/1–2).


  1. Abyzov SS, Mitskevich NI, Poglazova MN (1998) Microflora of the deep glacier horizon of Central Antarctica. Microbiol 67:451–458Google Scholar
  2. Abyzov SS, Mitskevich NI, Poglazova MN, Barkov NI, Lipenkov V Ya, Bobin NE, Kudryashov BB, Pashkevich VM (1999) Antarctic ice sheet as an object for solving some methodological problems of exobiology. Adv Space Res 23/2:371–376CrossRefGoogle Scholar
  3. Ananyan AA (1970) Unfrozen water content in frozen clay at a temperature from −0.6 °C to −40 °C−−60 °C. Merzl Issled 10:267–270 (in Russian)Google Scholar
  4. Berry ED, Foegeding PM (1997) Cold temperature adaptation and growth of microorganisms. J Food Prot 60(12):1583–1594Google Scholar
  5. Boone D, Johnson R, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741PubMedGoogle Scholar
  6. Carr MH (1989) Recharge of the early atmosphere of Mars by impact-induced release of CO2. Icarus 79:311–327CrossRefGoogle Scholar
  7. Carr MH (1996) Water on Mars. Oxford University Press, OxfordGoogle Scholar
  8. Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Methods 58:31–38PubMedCrossRefGoogle Scholar
  9. DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen: Medium no. 120: Methanosarcina,
  10. DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen: Medium no. 141: Methanogenium,
  11. Durham R, Schmunk RB, Chamberlain JW (1989) Comparative analysis of the atmospheres of early Earth and Mars. Adv Space Res 9:139–142CrossRefGoogle Scholar
  12. Eicher J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278CrossRefGoogle Scholar
  13. European Space Agency (2004) Water and Methane maps overlap on Mars: a new clue?
  14. Formisano V (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761PubMedCrossRefGoogle Scholar
  15. Franzmann PD, Springer N, Ludwig W, De Macario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica – Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581Google Scholar
  16. Franzmann PD, Liu Y, Balkwill DL, Aldric HC, de Macario EC, Boome DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bact 47/4:1068–1072CrossRefGoogle Scholar
  17. Friedmann E (1994) Permafrost as microbial habitat. In: Viable microorganisms in permafrost. Institute of Soil Science and photosynthesis, Russian Academy of Science, Pushkino, pp 21–26Google Scholar
  18. Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96:13033–13065CrossRefGoogle Scholar
  19. Garcia J-L, Patel BKC, Olliver B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6:205–226PubMedCrossRefGoogle Scholar
  20. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42PubMedCrossRefGoogle Scholar
  21. Gilichinsky D, Wagener S (1994) Microbial life in permafrost. In: Gilichinsky D (ed) Viable microorganisms in Permafrost. Pushchino Research Center, pp 7–20Google Scholar
  22. Gilichinsky D, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Orig Life Evol Biosph 23:65–75PubMedCrossRefGoogle Scholar
  23. Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin, Schinner F (eds) Cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 3–16Google Scholar
  24. Grotenhuis J, Plugge C, Stams A, Zehnder A (1992) Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge. Appl Environ Microbiol 58:1054–1056PubMedGoogle Scholar
  25. Heijnen C, Hok-A-Hin C, Van Veen J (1992) Improvements to the use of bentonite clay as a protective agent increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538CrossRefGoogle Scholar
  26. Høj L, Rolf O, Torsvik V (2005) Archaeal communities in High Arctic wetlands at Spitzbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101PubMedCrossRefGoogle Scholar
  27. Kobabe S, Wagner D, Pfeiffer E-M (2004) Characterization of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50:13–23CrossRefPubMedGoogle Scholar
  28. Kral TA, Bekkum CR, McKay CP (2004) Growth of methanogens on a Mars soil stimulant. Orig Life Evol Biosph 34:615–626PubMedCrossRefGoogle Scholar
  29. Kuzmin RO (2005) Ground ice in the Martian regolith. In: Tokano T (ed) Water on Mars and life. Springer, Berlin Heidelberg New York, pp 155–183Google Scholar
  30. Lange M, Ahring B (2001) A comprehensive study into the molecular methodology and molecular biology of methanogenic archaea. FEMS Microbiol Rev 25:553–571PubMedCrossRefGoogle Scholar
  31. Macario AJL, Lange M, Ahring BK, de Macario EC (1999) Stress genes and proteins in the Archaea. Microbiol Mol Biol Rev 63:923–967PubMedGoogle Scholar
  32. McKay CP, Davis W (1991) Duration of liquid water habitats on early Mars. Icarus 90:214–221PubMedCrossRefGoogle Scholar
  33. McKay CP, Friedman EI, Wharton RA, Davies WL (1992) History of water on Mars: a biological perspective. Adv Space Res 12:231–238PubMedCrossRefGoogle Scholar
  34. Moran M, Miller JD, Kral T, Scott D (2005) Desert methane: implications for life detection on Mars. Icarus 178:277–280CrossRefGoogle Scholar
  35. Möhlmann D (2005) Adsorption water-related potential chemical and biological processes in the upper Martian surface. Astrobiology 5:770–777PubMedCrossRefGoogle Scholar
  36. Möhlmann D, Wernecke R, Schwanke V (2004) Measurement principle and equipment for measuring humidity contents in the upper Martian surface and subsurface. ESA SP 543:163–168Google Scholar
  37. Ni S, Boone D (1998) Extremophilic, methanogenic archaea and their adaptation mechanisms. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley, New York, pp 211–232Google Scholar
  38. Ostroumov V (1995) A physical and chemical characterization of Martian permafrost as possible habitat for viable organisms. Adv Space Res 15/3:229–236CrossRefGoogle Scholar
  39. Ostroumov V, Siegert C (1996) Exobiological aspects of mass transfer in microzones of permafrost deposits. Adv Space Res 18/12:79–86CrossRefGoogle Scholar
  40. Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol 15:187–193Google Scholar
  41. Schlichting E, Blume HP, Stahr K (eds) (1995) Bodenkundliches Praktikum: Pareys Studientexte 81. Blackwell Wissensverlag, Berlin, GermanyGoogle Scholar
  42. Schwamborn G, Rachold V, Grigoriev, MN (2002) Late quaternary sedimentation history of the Lena Delta. Quat Int 89:119–134CrossRefGoogle Scholar
  43. Sears DWG, Benoit PH, McKeever SWS, Banerjee D, Kral T, Stites W, Roe L, Jansma P, Mattioli G (2002) Investigation of biological, chemical and physical processes on and in planetary surfaces by laboratory simulation. Planet Space Sci 50:821–828CrossRefGoogle Scholar
  44. Sherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Elem Res 5:149–163CrossRefGoogle Scholar
  45. Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Sys Appl Microbiol 26:312–318CrossRefGoogle Scholar
  46. Smith LC, MacDonald GM, Velichko AA, Beilman WD, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004) Siberian peatlands: a net carbon sink and global methane source since the early Holocene. Science 303:353–356PubMedCrossRefGoogle Scholar
  47. Soil Survey Staff (1998) Keys to soil taxonomy, Eighth Edition. Washington, D.C, Conservation Service, USDAGoogle Scholar
  48. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124CrossRefGoogle Scholar
  49. Tung HC, Bramall NE, Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA 102:18292–18296PubMedCrossRefGoogle Scholar
  50. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje J (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173PubMedCrossRefGoogle Scholar
  51. Vorobyova EA, Gilichinsky DA, Sonina VS et al. (1998) Antarctic permafrost as microbial habitat. In: Lake Vostok study: Scientific objectieves and technological requirements. International Workshop, March 24–26, St. Petersburg, Russia, p 97Google Scholar
  52. Wagner D, Pfeiffer E-M, Bock E (1999) Methane production in aerated marshland and model soils: effects of microflora and soil texture. Soil Biol Biochem 31:999–1006CrossRefGoogle Scholar
  53. Wagner D, Spieck E, Bock E, Pfeiffer E-M (2001) Microbial life in terrestrial permafrost: Methanogenesis and nitrification in gelisols as potentials for exobiological processes. In: Horneck G, Baumstark-Khan C (eds) Astrobiology – the quest for the conditions of life. Springer Verlag, Berlin Heidelberg New York, pp 143–159Google Scholar
  54. Wagner D, Kobabe S, Pfeiffer E-M, Hubberten H-W (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafr Periglac Process 14:173–185CrossRefGoogle Scholar
  55. Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7(10):1582–1592PubMedCrossRefGoogle Scholar
  56. Wharton RA Jr, McKay CP, Mancinelli RL, Simmons GM Jr (1989) Early Martian environments: the Antarctic and other terrestrial analogs. Adv Space Res 9/6:147–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Daria Morozova
    • 1
    Email author
  • Diedrich Möhlmann
    • 2
  • Dirk Wagner
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.DLR Institute of Planetary ResearchBerlinGermany

Personalised recommendations