Origins of Life and Evolution of Biospheres

, Volume 37, Issue 2, pp 177–188 | Cite as

Microbial Community of a Hydrothermal Mud Vent Underneath the Deep-Sea Anoxic Brine Lake Urania (Eastern Mediterranean)

  • Michail M. Yakimov
  • Laura Giuliano
  • Simone Cappello
  • Renata Denaro
  • Peter N. Golyshin


The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.


deep-sea hypersaline anoxic basins hydrothermal mud fluids 16S rRNA microbial community structure and function 



This study was supported by the European Commission’s Sustainable Marine Ecosystem program, under BIODEEP (EVK3-2000-00042) and COMMODE (EVK3-2002-00077) Projects. We thank Giuseppe D’Auria for his valuable help at sea and in the laboratory. We thank the crew and the pilot of RV Urania for their expert handling of our samplers and equipment at the Urania Basin and for highly productive cruises. P.N.G. acknowledges the support of DFG, Project Nr Ti86/8. Priority Program ‘Mars and Terrestrial Planets’, and GenoMikPlus Program of the Federal Ministery of Science and Education (BMBF).


  1. Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Raguénès G (2002) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an east pacific rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J, MEDINAUT Scientific Party (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the Eastern Mediterranean Sea. Deep-Sea Res 50:941–958CrossRefGoogle Scholar
  4. Corre E, Reysenbach A-L, Prieur D (2001) Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the mid-atlantic ridge. FEMS Microbiol Lett 205:329–335PubMedGoogle Scholar
  5. Corselli C, Basso D, De Lange GJ, Thomson J (1996) Mediterranean ridge accretionary complex yields rich surprises. EOS 77:227CrossRefGoogle Scholar
  6. Corselli C, Della Vedova B, Camerlenghi A, De Lange GJ, Westbrook GK (1998). Emission of warm fluids and high temperature in the Urania basin: observations from 1993 to 1998, International Workshop ‘Extreme Marine Environments’ GEOMAR Kiel, 19–22 November 1998, Volume of Abstracts: pp. 9–10Google Scholar
  7. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, D’Auria G, Yakimov MM, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, De Lange GJ, Andreas Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Biodeep Scientific Party (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep sea halocline. Nature 440:203–207PubMedCrossRefGoogle Scholar
  8. De Lange GJ, Ten Haven HL (1983) Recent sapropel formation in the Eastern Mediterranean. Nature 305:797–798CrossRefGoogle Scholar
  9. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine–seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085PubMedCrossRefGoogle Scholar
  10. Felsenstein J (2001) PHYLIP phylogenetic inference package, version 3.6 ed. Department of Genetics, University of Washington. Seattle, WashingtonGoogle Scholar
  11. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins Dos Santos VA, Yakimov MM, Timmis KN, Golyshin PN (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904PubMedCrossRefGoogle Scholar
  12. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme m reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491PubMedCrossRefGoogle Scholar
  13. Hübner A, De Lange GJ, Dittmer J, Halbach P (2003) Geochemistry of an exotic sediment layer above sapropel S-1: mud expulsion from the Urania Basin, Eastern Mediterranean? Mar Geol 197:49–61CrossRefGoogle Scholar
  14. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482PubMedCrossRefGoogle Scholar
  15. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe (III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221PubMedGoogle Scholar
  16. Kormas KA, Tivey MK, Von Damm K, Teske A (2006) Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site. Environ Microbiol 8:909–920PubMedCrossRefGoogle Scholar
  17. Lallemant S, Truffert C, Jolivet N, Henry P, Chamot-Rooke N, De Voogd B (1994) Spatial transition from compression to extension in the Western Mediterranean ridge accretionary complex. Tectonophysics 234:33–52CrossRefGoogle Scholar
  18. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackerbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  19. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111PubMedCrossRefGoogle Scholar
  20. Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and earth analogues. Astrobiology 3:785–811PubMedCrossRefGoogle Scholar
  21. MEDRIFF Consortium (1995) Three brine lakes discovered in the seafloor of the Eastern Mediterranean. EOS 76:313CrossRefGoogle Scholar
  22. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42CrossRefGoogle Scholar
  23. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458PubMedCrossRefGoogle Scholar
  24. Mouné S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130CrossRefGoogle Scholar
  25. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005a) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632CrossRefGoogle Scholar
  26. Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005b) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria isolated from a deep-sea hydrothermal system in the mid-Okinawa trough. Int J Syst Evol Microbiol 55:925–933CrossRefGoogle Scholar
  27. Rajagopal I (2000) SOFTWARE: genomics made easy. Science 290:474CrossRefGoogle Scholar
  28. Rambaut A (1996) Se–Al (Sequence Alignment Editor) version 1.0 alpha 1. WWW Page–Al/Se–Al.html
  29. Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806PubMedCrossRefGoogle Scholar
  30. Scientific Staff of Cruise Bannock 1984-12 (1985) Gypsum precipitation from cold brines in an anoxic basin in the Eastern Mediterranean. Nature 314:152–154CrossRefGoogle Scholar
  31. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365PubMedCrossRefGoogle Scholar
  32. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  33. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y (2003) Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174PubMedGoogle Scholar
  34. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nelson KH, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within epsilon-Proteobacteria isolated from a deep-sea hydrothermal fumarole in the mariana arc. Int J Syst Evol Microbiol 55:183–189PubMedCrossRefGoogle Scholar
  35. Tatusova TA, Madden TL (1999) BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 177:187–188Google Scholar
  36. Taylor CD, Wirsen CO, Gaill F (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65:2253–2255PubMedGoogle Scholar
  37. Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the guaymas basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007PubMedCrossRefGoogle Scholar
  38. Thomson J, Higgs NC, Wilson TRS, Croudace IW, De Lange GJ, Van Santvoort PJM (1995) Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent Eastern Mediterranean sapropel. Geochim Cosmochim Acta 59:3487–3501CrossRefGoogle Scholar
  39. van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, De Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  40. Wallmann K, Suess E, Westbrook GH, Winkler G, Cita MB, MEDRIFF Consortium (1997) Salty brines on the Mediterranean Sea floor. Nature 387:31–32CrossRefGoogle Scholar
  41. Wallmann K, Aghib FS, Castradori D, Cita MB, Suess E, Greinert J, Rickert D (2002) Sedimentation and formation of secondary minerals in the hypersaline discovery basin, Eastern Mediterranean. Mar Geol 186:9–28CrossRefGoogle Scholar
  42. Wirsen CO, Jannasch HW, Molyneaux SJ (1993) Chemosynthetic microbial activity at mid-Atlantic ridge hydrothermal vent sites. J Geophys Res 98:9693–9703CrossRefGoogle Scholar
  43. Yakimov MM, Giuliano L, Timmis KN, Golyshin PN (2001) Upstream-independent ribosomal RNA amplification analysis (URA): a new approach to characterizing the diversity of natural microbial communities. Environ Microbiol 3:662–666PubMedCrossRefGoogle Scholar
  44. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of Rod Bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Michail M. Yakimov
    • 1
  • Laura Giuliano
    • 1
  • Simone Cappello
    • 1
  • Renata Denaro
    • 1
  • Peter N. Golyshin
    • 2
  1. 1.Istituto per l’Ambiente Marino CostieroCNRMessinaItaly
  2. 2.Technical University BraunschweigBraunschweigGermany

Personalised recommendations