Origins of Life and Evolution of Biospheres

, Volume 37, Issue 1, pp 67–82 | Cite as

Mineral Surface Directed Membrane Assembly

  • Martin M. Hanczyc
  • Sheref  S. Mansy
  • Jack W. Szostak
Biomedical Vignette

Abstract

The transition from non-living to living matter may have resulted from the self-organizing properties of organic molecules and their interactions with a chemically rich inorganic environment. We have shown that a solution containing RNA, fatty acids and clay produces structures that contain a potentially catalytic surface (clay) and a potential informational biopolymer (RNA) encapsulated within a membrane. This highlights the ability of mineral surfaces to bring together and organize key components of primordial life. We have extended our analysis of mineral-mediated vesicle catalysis to include other natural minerals and synthetic surfaces of varying shape, size, and charge density. Our results show that while RNA polymerization on minerals may be restricted to the surface environment provided by montmorillonite, vesicle formation is enhanced in the presence of disparate types of surfaces. A model is presented in which new sheets of amphiphiles form just proximal to a surface. Similar interactions between amphiphiles and minerals on early Earth may have resulted in the encapsulation of a diverse array of mineral particulates with catalytic properties.

Keywords

amphiphile fatty acid micelle mineral montmorillonite pyrite RNA vesicle 

References

  1. Bernal JD (1951) The physical basis of life. Routledge, LondonGoogle Scholar
  2. Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87(2):988–998PubMedCrossRefGoogle Scholar
  3. Cormell BA, Fletcher GC, Middlehurst J, Separovic F (1982) The lower limit to the size of small sonicated phospholipid vesicles. Biochim Biophys Acta 690:15–19CrossRefGoogle Scholar
  4. Deamer D, Dworkin JP et al (2002) The first cell membranes. Astrobiology 2(4):371–381PubMedCrossRefGoogle Scholar
  5. Ertem G (2004) Montmorillonite, oligonucleotides, RNA and origin of life. Orig Life Evol Biosph 34(6):549–570PubMedCrossRefGoogle Scholar
  6. Ferris JP, Ertem G (1992) Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257:1387–1389PubMedCrossRefGoogle Scholar
  7. Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275PubMedCrossRefGoogle Scholar
  8. Ferris JP, Hill AR Jr et al (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381(6577):59–61PubMedCrossRefGoogle Scholar
  9. Gebicki JM, Hicks M (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243(5404):232–234PubMedCrossRefGoogle Scholar
  10. Gebicki JM, Hicks M (1976) Preparation and properties of vesicles enclosed by fatty acid membranes. Chem Phys Lipids 16(2):142–160PubMedCrossRefGoogle Scholar
  11. Giles CH (1982) Forces operating in adsorption of surfactants and other solutes at solid surfaces: a survey. Plenum, New YorkGoogle Scholar
  12. Hanczyc MM, Fujikawa SM et al (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302(5645):618–622PubMedCrossRefGoogle Scholar
  13. Monnard PA (2005) Catalysis in abiotic structured media: an approach to selective synthesis of biopolymers. Cell Mol Life Sci 62(5):520–534PubMedCrossRefGoogle Scholar
  14. Sowerby SJ, Cohn CA et al (2001) Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc Natl Acad Sci USA 98(3):820–822PubMedCrossRefGoogle Scholar
  15. Sowerby SJ, Petersen GB et al (2002) Primordial coding of amino acids by adsorbed purine bases. Orig Life Evol Biosph 32(1):35–46PubMedCrossRefGoogle Scholar
  16. Stöber W, Fink A et al (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  17. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52(4):452–484PubMedGoogle Scholar
  18. Walde P, Wick R et al (1994) Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116:11649–11654CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Martin M. Hanczyc
    • 1
    • 2
  • Sheref  S. Mansy
    • 1
  • Jack W. Szostak
    • 1
    • 3
  1. 1.Howard Hughes Medical Institute and Department of Molecular BiologyMassachusetts General HospitalBostonUSA
  2. 2.ProtoLife Srl and the European Center for Living TechnologyVeniceItaly
  3. 3.Department of Molecular Biology, and Center for Computational and Integrative Biology 7215, Simches Research CenterMassachusetts General HospitalBostonUSA

Personalised recommendations