Advertisement

Origins of Life and Evolution of Biospheres

, Volume 36, Issue 4, pp 363–379 | Cite as

AB INITIO Simulations of Desorption and Reactivity of Glycine at a Water-Pyrite Interface at “Iron-Sulfur World” Prebiotic Conditions

  • Rodolphe Pollet
  • Christian Boehme
  • Dominik Marx
Article

Abstract

Glycine at the interface of a pyrite surface (001) FeS2, and bulk water at high pressure and temperature conditions relevant to the “iron-sulfur world” scenario of the origin of life is investigated by theoretical means. Car-Parrinello molecular dynamics is used in order to study the desorption process of the zwitterionic form of this amino acid using two different adsorption modes, where either only one or both oxygens of the carboxylate group are anchored to surface iron atoms. It is found that the formation of stabilizing hydrogen bonds plays a key role in the detachment process, leading to longer retention times for the bidentate adsorption mode. In addition, the chemical reactivity of this heterogeneous system is probed by calculating the Fukui functions as site-specific reactivity indices. The most prominent targets for both nucleophilic and electrophilic reactions to occur are surface atoms, whereas the reactivity of glycine is only slightly affected upon anchoring.

Keywords

amino acids Car-Parrinello molecular dynamics hydrogen bonds origins of life pyrite surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bada, J. L. and Lazcano, A.: 2002, Origin of Life-Some Like It Hot, But Not the First Biomolecules, Science 296(5575), 1982–1983.CrossRefPubMedGoogle Scholar
  2. Bada, J. L. and Lazcano, A.: 2003. Prebiotic Soup-Revisiting the Miller Experiment, Science 300(5620), 745–746.CrossRefPubMedGoogle Scholar
  3. Bebie, J., Schoonen, M. A. A., Fuhrman, M. and Strongin, D. R.: 1998, Surface Charge Development on Transition Metal Sulfides: An electrokinetic study, Geochim. Cosmochim. Acta. 62(4), 633–642.CrossRefGoogle Scholar
  4. Becke, A. D.: 1988, Density-Functional Exchange-Energy Approximation with Correct Asymptotic-behavior, Phys. Rev. A 38(6), 3098–3100.CrossRefPubMedGoogle Scholar
  5. Bernal, J. D. ed.: 1951, The Physical Basis of Life. Routledge and Kegan Paul Ltd., London. See in particular pp. 33.Google Scholar
  6. Boehme, C. and Marx, D.: 2003, Glycine on a Wet Pyrite Surface at Extreme Conditions, J. Am. Chem. Soc. (Communication to the Editor) 125, 13362–13363.Google Scholar
  7. Car, R. and Parrinello, M.: 1985, Unified Approach for Molecular-Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55(22), 2471–2474.CrossRefPubMedGoogle Scholar
  8. Chattaraj, P. K.: 2001, Chemical Reactivity and Selectivity: Local HSAB Principle Versus Frontier Orbital Theory, J. Phys. Chem. A 105(2), 511–513.CrossRefGoogle Scholar
  9. Chermette, H.: 1999, Chemical Reactivity Indexes in Density Functional Theory, J. Comput. Chem. 20(1), 129–154.CrossRefGoogle Scholar
  10. Cody, G. D.: 2004, Transition Metal Sulfides and the Origins of Metabolism, Annu. Rev. Planet. Sci. 32, 569–599.CrossRefGoogle Scholar
  11. Cody, G. D., Boctor, N. Z., Brandes, J. A., Filley, T. R., Hazen, R. M. and Yoder, H. S. J.: 2004, Assaying the Catalytic Potential of Transition Metal Sulfides for Abiotic Carbon Fixation, Geochim. Cosmochim. Acta. 68(10), 2185–2196.CrossRefGoogle Scholar
  12. de Duve, C. and Miller, S. L.: 1991, 2-Dimensional Life, Proc. Natl. Acad. Sci. USA 88(22), 10014–10017.PubMedCrossRefGoogle Scholar
  13. de Leeuw, N. H., Parker, S. C., Sithole, H. M. and Ngoepe, P. E.: 2000, Modeling the Surface Structure and Reactivity of Pyrite: Introducing a Potential Model for FeS2, J. Phys. Chem. B 104(33), 7969–7976.CrossRefGoogle Scholar
  14. Deamer, D. W. and Fleischaker, G. R. (eds.): 1994, Origins of Life. Bartlett Publishers, Boston.Google Scholar
  15. Dörr, M., KäBbohrer, J., Grunert, R., Kreisel, G., Brand, W. A., Werner, R. A., Geilmann, H., Apfel, C., Robl, C. and Weigand, W.: 2003, A Possible Prebiotic Formation of Ammonia from Dinitrogen on Iron Sulfide Surfaces, Angew. Chem. Int. Ed. 42, 1540–1543.CrossRefGoogle Scholar
  16. Fry, I.: 2000, The Emergence of Life on Earth, Rutgers UP, New Brunswick.Google Scholar
  17. Hartwigsen, C., Goedecker, S. and Hutter, J.: 1998, Relativistic Separable Dual-Space Gaussian Pseudopotentials from H to Rn. Phys. Rev. B 58(7), 3641–3662.Google Scholar
  18. Hazen, R. M.: 2001, Life's Rocky Start, Scientifc American, April: 76–85.Google Scholar
  19. Huber, C., Eisenreich, W., Hecht, S. and Wächtershäuser, G.: 2003, A Possible Primordial Peptide Cycle, Science 301(5635), 938–940.CrossRefPubMedGoogle Scholar
  20. Huber, C. and Wächtershäuser, G.: 1998, Peptides by Activation of Amino Acids with CO on (Ni, Fe)S Surfaces: Implications for the Origin of Life, Science 281(5377), 670–672.CrossRefPubMedGoogle Scholar
  21. Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D.: 1993, Car-Parrinello Molecular-Dynamics with Vanderbilt Ultrasoft Pseudopotentials, Phys. Rev. B 47(16), 10142–10143.CrossRefGoogle Scholar
  22. Langel, W. and Menken, L.: 2003, Simulation of the Interface Between Titanium Oxide and Amino Acids in Solution by First Principles MD, Surf. Sci. 538, 1–9.CrossRefGoogle Scholar
  23. Leung, K. and Rempe, S. B.: 2005, Ab Initio Molecular Dynamics Study of Glycine Intramolecular Proton Transfer in Water, J. Chem. Phys. 122, 184506, 1–12.Google Scholar
  24. Marx, D. and Hutter, J.: 2000, Ab initio molecular dynamics: Theory and implementation, in Grotendorst, J. (ed.), Modern Methods and Algorithms of Quantum Chemistry, pp. 301–449, NIC, Jülich. for downloads see http://www.theochem.rub.de/go/cprev.html.
  25. Miller, S. L.: 1953, A Production of Amino Acids Under Possible Primitive Earth Conditions, Science 117, 528–592.PubMedCrossRefGoogle Scholar
  26. Nilsson, A. and Pettersson, L. G. M.: 2004, Chemical Bonding on Surfaces Probed by X-ray Emission Spectroscopy and Density Functional Theory, Surf. Sci. Rep. 55, 49–167.CrossRefGoogle Scholar
  27. Ortmann, F., Schmidt, W. G. and Bechstedt, F.: 2005, Attracted by Long-Range Electron Correlation: Adenine on Graphite, Phys. Rev. Lett. 95, 186101–1-186101–4.Google Scholar
  28. Parr, R. G. and Yang, W.: 1989, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York.Google Scholar
  29. Perdew, J. P.: 1986, Density-Functional Approximation for the Correlation-Energy of the Inhomogeneous Electron-Gas, Phys. Rev. B 33(12), 8822–8824.CrossRefGoogle Scholar
  30. Perdew, J. P., Burke, K. and Ernzerhof, M.: 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865–3868. Erratum: 1997, 78, 1396.Google Scholar
  31. Philpott, M. R., Goliney, I. Y. and Lin, T. T.: 2004, Molecular Dynamics Simulation of Water in a Contact with an Iron Pyrite FeS2 Surface, J. Chem. Phys. 120(4), 1943–1950.CrossRefPubMedGoogle Scholar
  32. Preuss, M., Schmidt, W. G. and Bechstedt, F.: 2005, Coulombic Amino Group-Metal Bonding: Adsorption of Adenine on Cu(110), Phys. Rev. Lett. 94, 236102–1-236102–4.Google Scholar
  33. Saladino, R., Crestini, C., Ciambecchini, U., Ciciriello, F., Costanzo, G. and Di Mauro, E.: 2004, Synthesis and Degradation of Nucleobases and Nucleic Acids by Formamide in the Presence of Montmorillonites, Chem. Bio. Chem. 5, 1558–1556.PubMedGoogle Scholar
  34. Severin, K.: 2000, Hot Stones or Cold Soup? Angew. Chem. Int. Ed. 39, 3589–3590.Google Scholar
  35. Stevens, E. D., DeLucia, M. L. and Coppens, P.: 1980, Experimental-Observation of the Effect of Crystal-Field Splitting on the Electron-Density Distribution of Iron Pyrite. Inorg. Chem. 19(4), 813–820.Google Scholar
  36. Stirling, A., Bernasconi, M. and Parrinello, M.: 2003a, Ab Initio Simulation of H2S Adsorption on the (100) Surface of Pyrite. J. Chem. Phys. 119, 4934–4939.CrossRefGoogle Scholar
  37. Stirling, A., Bernasconi, M. and Parrinello, M.: 2003b, Ab Initio Simulation of Water Interaction with the (100) Surface of Pyrite, J. Chem. Phys. 118, 8917–8926.CrossRefGoogle Scholar
  38. CPMD (2004): Hutter J. et al., Copyright: IBM Corp 1990–2004, MPI für Festkörperforschung Stuttgart 1997–2001.Google Scholar
  39. Vanderbilt, D.: 1990, Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B 41(11), 7892–7895.CrossRefGoogle Scholar
  40. von Kiedrowski, G.: 1996, Origins of life–Primordial soup or crêpes? Nature 381, 20–21.Google Scholar
  41. Vuilleumier, R. and Sprik, M.: 2001, Electronic Properties of Hard and Soft Ions in Solution: Aqueous Na+ and Ag+ Compared, J. Chem. Phys. 115(8), 3454–3468.CrossRefGoogle Scholar
  42. Wächtershäuser, G.: 1988a, Before Enzymes and Templates – Theory of Surface Metabolism, Microbiol. Rev. 52(4), 452–484.Google Scholar
  43. Wächtershäuser, G.: 1988b, Pyrite Formation, the 1st Energy-Source for Life – A Hypothesis, Syst. Appl. Microbiol. 10(3), 207–210.Google Scholar
  44. Wächtershäuser, G.: 1990, Evolution of the 1st Metabolic Cycles, Proc. Natl. Acad. Sci. USA 87(1), 200–204.PubMedCrossRefGoogle Scholar
  45. Wächtershäuser, G.: 1992, Groundworks for an Evolutionary Biochemistry – The Iron Sulfur World, Prog. Biophys. Mol. Biol. 58(2), 85–201.CrossRefPubMedGoogle Scholar
  46. Wächtershäuser, G.: 1994, Life in a Ligand Sphere, Proc. Natl. Acad. Sci. USA 91(10), 4283–4287.PubMedCrossRefGoogle Scholar
  47. Wächtershäuser, G.: 1998, Thermophiles, p. 47. Taylor and Francis, Philadelphia.Google Scholar
  48. Wächtershäuser, G.: 2002, Discussing the Origin of Life (comment), Science 298, 748–748.Google Scholar
  49. Will, G., Lauterjung, J., Schmitz, H. and Hinze, E.: 1984, High Pressure in Science and Technology, Elsevier, New York.Google Scholar
  50. Yang, W., Parr, R. G. and Pucci, R.: 1984, Electron-Density, Kohn-Sham Frontier Orbitals, and Fukui Functions, J. Chem. Phys. 81(6), 2862–2863.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Rodolphe Pollet
    • 1
    • 2
  • Christian Boehme
    • 1
    • 3
  • Dominik Marx
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieRuhr-Universität BochumBochumGermany
  2. 2.Laboratoire Francis PerrinCEAGif-sur-YvetteFrance
  3. 3.GWDGAm FassbergGöttingenGermany

Personalised recommendations