Origins of Life and Evolution of Biospheres

, Volume 36, Issue 4, pp 413–420 | Cite as

Intramolecular RNA replicase: Possibly the first self-replicating molecule in the RNA world

  • Wentao MaEmail author
  • Chunwu Yu


Although there is more and more evidence suggested the existence of an RNA World during the origin of life, the scenario concerning the origin of the RNA World remains blurry. Usually it is speculated that it originated from a prebiotic nucleotide pool, during which a self-replicating RNA synthesis ribozyme may have emerged as the first ribozyme – the RNA replicase. However, there is yet no ersuasive supposition for the mechanism for the self-favouring feature of the replicase, thus the speculation remains unconvincing. Here we suggest that intramolecular catalysis is a possible solution. Two RNA synthesis ribozymes may be integrated into one RNA molecule, as two functional domains which could catalyze the copy of each other. Thus the RNA molecule could self-replicate and be referred to as “intramolecular replicase“ here. Computational simulation to get insight into the dynamic mechanism of emergence of the intramolecular replicase from a nucleotide pool is valuable and would be included in a following work of our group.


intramolecular catalysis molecular evolution origin of life RNA replicase RNA World 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartel, D. P. and Szostak, J. W.: 1993, Isolation of New Ribozymes from a Large Pool of Random Sequences, Science 261, 1411–1418.PubMedCrossRefGoogle Scholar
  2. Bartel, D. P.: 1999, Re-Creating an RNA Replicase, in R. F. Gesteland, T. R. Cech, and J. F. Atkins (eds), The RNA World. Cold Spring Harbor Laboratory Press, New York, pp. 143–162Google Scholar
  3. Ertem,G.: 2004, Montmorillonite, oligonucleotides, RNA and origin of life, Orig. Life Evol. Biosph. 34, 549–570.PubMedCrossRefGoogle Scholar
  4. Fedor, M. J.: 2000, Structure and Function of the Hairpin Ribozyme, J. Mol. Biol. 297, 269–291.PubMedCrossRefGoogle Scholar
  5. Ferris, J. P., Hill, A. R., Liu, R. and Orgel, L. E.: 1996, Synthesis of Long Prebiotic Oligomers on Mineral Surfaces, Nature 381, 59–61.PubMedCrossRefGoogle Scholar
  6. Ferris, J. P.: 2002, Montmorillonite Catalysis of 30–50 Mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World, Orig. Life Evol. Biosph. 32, 311–332.PubMedCrossRefGoogle Scholar
  7. Franchi, M. and Gallori, E.: 2005, A Surface-Mediated Origin of the RNA World: Biogenic Activities of Clay-Adsorbed RNA Molecules, Gene 346, 205–214.PubMedCrossRefGoogle Scholar
  8. Hammann, C. and Lilley, D. M. J.: 2002, Folding and Activity of the Hammerhead Ribozyme, Chembiochem. 3, 691–700.Google Scholar
  9. Jaeger, L., Wright, M. C. and Joyce, G. F.: 1999, A Complex Ligase Ribozyme Evolved in Vitro From a Group I Ribozyme Domain, Proc. Natl. Acad. Sci. 96, 14712–14717.PubMedCrossRefGoogle Scholar
  10. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. and Bartel, D. P.: 2001, RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension, Science 292, 1319–1325.PubMedCrossRefGoogle Scholar
  11. Joyce, G. F. and Orgel, L. E.: 1999, Prospects for Understanding the Origin of the RNA World. in R. F. Gesteland, T. R. Cech and J. F. Atkins (eds), The RNA World. Cold Spring Harbor Laboratory Press, New York, pp. 49–77Google Scholar
  12. Joyce, G. F.: 2004, Directed evolution of nucleic acid enzymes, Ann. Rev. Biochem. 73, 791–836.PubMedCrossRefGoogle Scholar
  13. Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.PubMedCrossRefGoogle Scholar
  14. Kim, D. E. and Joyce, G. F.: 2004, Cross-Catalytic Replication of an RNA Ligase Ribozyme, Chem. Biol. 11, 1505–1512.PubMedCrossRefGoogle Scholar
  15. Kozlov I. A. and Orgel, L. E.: 2000, Nonenzymatic Template-Directed Synthesis of RNA From Monomers, Mol. Biol. 34, 781–789.CrossRefGoogle Scholar
  16. McGinness, K. E. and Joyce, G. F.: 2002, RNA-Catalyzed RNA Ligation on an External RNA Template, Chem. Biol. 9, 297–307.PubMedCrossRefGoogle Scholar
  17. McGinness, K. E. and Joyce, G. F.: 2003, In Search of an RNA Replicase Ribozyme, Chem. Biol. 10, 5–14.PubMedCrossRefGoogle Scholar
  18. Miller, S. L.: 1998, The Endogenous Synthesis of Organic Compound, in Brack, A. (ed), The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge University Press, Cambridge, pp. 59–85Google Scholar
  19. Monteiro, L. H. A. and Piqueira, J. R. C.: 1998, A Model for the Early Evolution of Self-Replicating Polymers, J. Theor. Biol. 191, 237–248.CrossRefGoogle Scholar
  20. Monteiro, L. H. A. and Piqueira, J. R. C.: 1999, Modeling Homopolymer Self-Replication: Implications for Early Competition, J. Theor. Biol. 196, 51–60.PubMedCrossRefGoogle Scholar
  21. Ono, N.: 2005, Computational Studies on Conditions of the Emergence of Autopoietic Protocells, Biosys. 81, 223–233.CrossRefGoogle Scholar
  22. Orgel, L. E.: 1992, Molecular Replication, Nature 358, 203–209.PubMedCrossRefGoogle Scholar
  23. Orgel, L. E.: 2004, Prebiotic Chemistry and the Origin of the RNA World, Crit. Rev. Biochem. Mol. Biol. 39, 99–123.PubMedCrossRefGoogle Scholar
  24. Paul, N. and Joyce, G. F.: 2002, A Self-Replicating Ligase Ribozyme, Proc. Natl. Acad. Sci. 99, 12733–12740.PubMedCrossRefGoogle Scholar
  25. Rohatgi, R., Bartel, D. P. and Szostak, J. W.: 1996, Nonenzymatic, Template-Directed Ligation of Oligoribonucleotides Is Highly Regioselective for the Formation of 3′–5′ Phosphodiester Bonds, J. Am. Chem. Soc. 118, 3340–3344.PubMedCrossRefGoogle Scholar
  26. Sacerdote, M. G. and Szostak, J. W.: 2005, Semipermeable Lipid Bilayers Exhibit Diastereoselectivity Favoring Ribose, Proc. Natl. Acad. Sci. 102, 6004–6008.PubMedCrossRefGoogle Scholar
  27. Scheuring, I., Czaran, T., Szabo, P., Karolyi, G. and Toroczkai, Z.: 2003, Spatial Models of Prebiotic Evolution: Soup Before Pizza? Orig. Life Evol. Biosph. 33, 319–355.PubMedCrossRefGoogle Scholar
  28. Schwartz, A. W.: 1998, Origins of the RNA World, in A. Brack (ed), The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge University Press, Cambridge, pp. 237–254Google Scholar
  29. Szabo, P., Scheuring, I., Czaran, T. and Szathmary, E.: 2002, In Silico Simulations Reveal That Replicators With Limited Dispersal Evolve Towards Higher Efficiency and Fidelity, Nature 420, 340–343.PubMedCrossRefGoogle Scholar
  30. Szostak, J. W., Bartel, D. P. and Luisi, P. L.: 2001, Synthesizing Life, Nature 409, 387–390.PubMedCrossRefGoogle Scholar
  31. Taylor, W. R.: 2005, Modelling molecular stability in the RNA world, Comp. Biol. Chem. 29, 259–272.CrossRefGoogle Scholar
  32. Wattis, J. A. D. and Coveney, P. V.: 1999, The Origin of the RNA World: A Kinetic Model, J. Phys. Chem. B 103, 4231–4250.CrossRefGoogle Scholar
  33. Wein, A. M. and Maizels, N.: 1987, 3′ Terminal TRNA-Like Structures Tag Genomic RNA Molecules for Replication: Implications for the Origin of Protein Synthesis, Proc. Natl. Acad. Sci. 84, 7383–7387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.College of Life SciencesWuhan UniversityWuhanP.R.China
  2. 2.State Key Laboratory of Software EngineeringWuhan UniversityWuhanP.R.China
  3. 3.College of Computer SciencesWuhan UniversityWuhanP.R.China

Personalised recommendations