Advertisement

Origins of Life and Evolution of Biospheres

, Volume 35, Issue 6, pp 507–521 | Cite as

Dissociation in a Polymerization Model of Homochirality

  • A. BrandenburgEmail author
  • A. C. Andersen
  • M. Nilsson
Chirality

Abstract

A fully self-contained model of homochirality is presented that contains the effects of both polymerization and dissociation. The dissociation fragments are assumed to replenish the substrate from which new monomers can grow and undergo new polymerization. The mean length of isotactic polymers is found to grow slowly with the normalized total number of corresponding building blocks. Alternatively, if one assumes that the dissociation fragments themselves can polymerize further, then this corresponds to a strong source of short polymers, and an unrealistically short average length of only 3. By contrast, without dissociation, isotactic polymers becomes infinitely long.

Keywords

DNA polymerization enantiomeric cross-inhibition origin of homochirality Revision: 1.41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avetisov, V. A. and Goldanskii, V: 1993 Chirality and the Equation of Biological Big Bang, Phys. Lett. A 172 407–410Google Scholar
  2. Bailey, J: 2001 Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality, Orig. Life Evol. Biosph. 31, 167–183CrossRefPubMedGoogle Scholar
  3. Brandenburg, A., Andersen, A., Nilsson, M., and Höfner, S.: 2005, Homochiral Growth Through Enantiomeric Cross-Inhibition Orig. Life Evol. Biosph. 35, 225–241.Google Scholar
  4. Brandenburg, A., & Multamäki, T: 2004 How Long can Left and Right Handed Life Forms Coexist?, Int. J. Astrobiol. 3, 209–219.CrossRefGoogle Scholar
  5. Crick, F. H. C: 1968 The Origin of the Genetic Code, J. Mol. Biol. 38, 367–379.CrossRefPubMedGoogle Scholar
  6. Frank, F.: 1953, On spontaneous Asymmetric Synthesis, Biochim. Biophys. Acta 11, 459–464.CrossRefPubMedGoogle Scholar
  7. Gilbert, W: 1986 Origin of Life – the RNA World, Nature 319, 618–618.CrossRefGoogle Scholar
  8. Goldanskii, V. I. and Kuzmin, V. V: 1989 Spontaneous Breaking of Mirror Symmetry in Nature and Origin of Life, Sov. Phys. Uspekhi 32 1–29.Google Scholar
  9. Hegstrom, R. A: 1984 Parity Nonconservation and the Origin of Biological Chirality – Theoretical Calculations, Orig. Life 14 405–414.CrossRefGoogle Scholar
  10. Joyce, G. F: 1991 The Rise and Fall of the RNA World, New Biol. 3, 399–407.PubMedGoogle Scholar
  11. Kondepudi, D. K. and Nelson, G. W: 1983 Chiral Symmetry Breaking in Nonequilibrium Chemical Systems, 50, 1023–1026.CrossRefGoogle Scholar
  12. Orgel, L. E: 1968 Evolution of the Genetic Apparatus, J. Mol. Biol. 38, 381–393.CrossRefPubMedGoogle Scholar
  13. Sandars, P. G. H: 2003 A Toy Model for the Generation of Homochirality During Polymerization, Orig. Life Evol. Biosph. 33, 575–587.CrossRefPubMedGoogle Scholar
  14. Saito, Y. and Hyuga, H: 2004a Complete Homochirality Induced by the Nonlinear Autocatalysis and Recycling, J. Phys. Soc. Jap. 73, 33–35.CrossRefGoogle Scholar
  15. Saito, Y. and Hyuga, H: 2004b Homochirality Proliferation in Space, J. Phys. Soc. Jap. 73, 1685–1688.CrossRefGoogle Scholar
  16. Thiemann, W: 1984 Speculations and Facts on the Possible Inductions of Chirality Through Earth Magnetic Field, Orig. Life Evol. Biosph. 14, 421–426.CrossRefGoogle Scholar
  17. Wattis, J. A. D. and Coveney, P. V: 1999 The Origin of the RNA World: A Kinetic Model, J. Phys. Chem. B 103, 4223–4250.CrossRefGoogle Scholar
  18. Wattis, J. A. D. and Coveney, P. V.: 2005, Symmetry-Breaking in Chiral Polymerization Orig. Life Evol. Biosph. 35, 243–273.Google Scholar
  19. Woese, C: 1967, The Genetic Code, New York: Harper and RowGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Copenhagen ØDenmark

Personalised recommendations