Origins of Life and Evolution of Biospheres

, Volume 36, Issue 1, pp 39–63

Glyoxylate as a Backbone Linkage for a Prebiotic Ancestor of RNA

  • Heather D. Bean
  • Frank A. L. Anet
  • Ian R. Gould
  • Nicholas V. Hud
Article

Abstract

The origin of the first RNA polymers is central to most current theories for the origin of life. Difficulties associated with the prebiotic formation of RNA have lead to the general consensus that a simpler polymer preceded RNA. However, polymers proposed as possible ancestors to RNA are not much easier to synthesize than RNA itself. One particular problem with the prebiotic synthesis of RNA is the formation of phosphoester bonds in the absence of chemical activation. Here we demonstrate that glyoxylate (the ionized form of glyoxylic acid), a plausible prebiotic molecule, represents a possible ancestor of the phosphate group in modern RNA. Although in low yields (∼ 1%), acetals are formed from glyoxylate and nucleosides under neutral conditions, provided that metal ions are present (e.g., Mg2+), and provided that water is removed by evaporation at moderate temperatures (e.g., 65 C), i.e. under “drying conditions”. Such acetals are termed ga-dinucleotides and possess a linkage that is analogous to the backbone in RNA in both structure and electrostatic charge. Additionally, an energy-minimized model of a gaRNA duplex predicts a helical structure similar to that of A-form RNA. We propose that glyoxylate-acetal linkages would have had certain advantages over phosphate linkages for early self-replicating polymers, but that the distinct functional properties of phosphoester and phosphodiester bonds would have eventually lead to the replacement of glyoxylate by phosphate.

Keywords

acetal backbone analog glyoxylic acid nucleotide analog prebiotic synthesis RNA ancestor proto-RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avetisov, V. and Goldanskii, V.: 1996, Mirror Symmetry Breaking at the Molecular Level, Proc. Natl. Acad. Sci. USA 93, 11435–11442.PubMedCrossRefGoogle Scholar
  2. Bengston, S.: 1994, Early Life on Earth, Columbia University, New York.Google Scholar
  3. Benner, S.A.: 2004, Understanding Nucleic Acids Using Synthetic Chemistry, Acc. Chem. Res. 37, 784–797.PubMedCrossRefGoogle Scholar
  4. Böhler, C., Nielsen, P. E. and Orgel, L. E.: 1995, Template Switching Between PNA and RNA Oligonucleotides, Nature 376, 578–581.PubMedGoogle Scholar
  5. Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Wang, B., Pearlman, D. A. et al.: 2004, University of California, San Francisco.Google Scholar
  6. Chaput, J. C., Ichida, J. K. and Szostak, J. W.: 2003, DNA Polymerase-Mediated DNA Synthesis on a TNA Template, J. Am. Chem. Soc. 125, 856–857.PubMedGoogle Scholar
  7. Cheatham, T. E., III and Kollman, P. A.: 1997, Molecular Dynamics Simulations Highlight the Structural Differences among DNA:DNA, RNA:RNA, and DNA:RNA Hybrid Duplexes, J. Am. Chem. Soc. 119, 4805–4825.Google Scholar
  8. Cieplak, P., Cheatham, T. E., III and Kollman, P. A.: 1997, Molecular Dynamics Simulations Find That 3′ Phosphoramidate Modified DNA Duplexes Undergo a B to A Transition and Normal DNA Duplexes an A to B Transition, J. Am. Chem. Soc. 119, 6722–6730.CrossRefGoogle Scholar
  9. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A.: 1995, A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc. 117, 5179–5197.CrossRefGoogle Scholar
  10. De Proft, F., Langenaeker, W. and Geerlings, P.: 1995, Acidity of Alkyl Substituted Alcohols: Are Alkyl-Groups Electron-Donating or Electron-Withdrawing? Tetrahedron 51, 4021–4032.Google Scholar
  11. Eschenmoser, A.: 1999, Chemical Etiology of Nucleic Acid Structure, Science 284, 2118–2124.PubMedCrossRefGoogle Scholar
  12. Ferris, J. P., Aubrey R. Hill, J., Liu, R. and Orgel, L. E.: 1996, Synthesis of Long Prebiotic Oligomers on Mineral Surfaces, Nature 381, 59–61.PubMedCrossRefGoogle Scholar
  13. Fuller, W. D., Sanchez, R. A. and Orgel, L. E.: 1972, Studies in Prebiotic Synthesis. VII Solid-State Synthesis of Purine Nucleosides, J. Mol. Evol. 1, 249–257.PubMedCrossRefGoogle Scholar
  14. Gesteland, R. and Atkins, J. F. (eds.): 1999, The RNA World, Second Edition: The Nature of Modern RNA Suggests a Prebiotic RNA World, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  15. Herdewijn, P.: 2001, TNA as a Potential Alternative to Natural Nucleic Acids, Angew. Chem., Int. Ed. Engl. 40, 2249–2251.CrossRefGoogle Scholar
  16. Hud, N. V. and Anet, F. A. L.: 2000, Intercalation-Mediated Synthesis and Replication: A New Approach to the Origin of Life, J. theor. Biol. 205, 543–562.PubMedCrossRefGoogle Scholar
  17. Jain, S. S., Anet, F. A. L., Stahle, C. J. and Hud, N. V.: 2004, Enzymatic Behavior by Intercalating Molecules in a Template-Directed Ligation Reaction, Angew. Chem. Int. Ed. Engl. 43, 2004–2008.PubMedGoogle Scholar
  18. Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.PubMedCrossRefGoogle Scholar
  19. Joyce, G. F., Inoue, T. and Orgel, L. E.: 1984, Non-Enzymatic Template-Directed Synthesis on RNA Random Copolymers. Poly(C, U) Templates, J. Mol. Biol. 176, 279–306.PubMedCrossRefGoogle Scholar
  20. Joyce, G. F. and Orgel, L. E.: 1999, Prospects for Understanding the Origin of the RNA World in The RNA World, Gesteland, R. F., Cech, T. R. and Atkins, J. F. (eds), 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 49–77.Google Scholar
  21. Joyce, G. F., Schwartz, A. W., Miller, S. L. and Orgel, L. E.: 1987, The Case for an Ancestral Genetic System Involving Simple Analogues of the Nucleotides, Proc. Natl. Acad. Sci. USA 84, 4398–4402.PubMedGoogle Scholar
  22. Keefe, A. D. and Miller, S. L.: 1995, Are Polyphosphates or Phosphate Esters Prebiotic Reagents? J. Mol. Evol. 41, 693–702.PubMedCrossRefGoogle Scholar
  23. Kirby, A. J. and Jencks, W. P.: 1965, The Reactivity of Nucleophilic Reagents Toward the p-Nitrophenyl Phosphate Dianion, J. Am. Chem. Soc. 87, 3209–3216.Google Scholar
  24. Lavery, R. and Sklenar, H.: 1989, Defining the Structure of Irregular Nucleic Acids – Conventions and Principles, J. Biomol. Struct. Dyn. 6, 655–667.PubMedGoogle Scholar
  25. Li, X., Zhan, Z.-Y. J., Knipe, R. and Lynn, D. G.: 2002, DNA-Catalyzed Polymerization, J. Am. Chem. Soc. 124, 746–747.PubMedGoogle Scholar
  26. Miller, S. L.: 1997, Peptide Nucleic Acids and Prebiotic Chemistry, Nat. Struct. Biol. 4, 167–169.PubMedCrossRefGoogle Scholar
  27. O'Brien, P. J. and Herschlag, D.: 2001, Functional Interrelationships in the Alkaline Phosphatase Superfamily: Phosphodiesterase Activity of Escherichia Coli Alkaline Phosphatase, Biochemistry 40, 5691–5699.PubMedCrossRefGoogle Scholar
  28. Orgel, L. E.: 2004, Prebiotic Chemistry and the Origin of the RNA World, Crit. Rev. Biochem. Mol. Biol. 39, 99–123.PubMedGoogle Scholar
  29. Ould-Moulaye, C. B., Dussap, C. G. and Gros, J. B.: 2002, A Consistent Set of Formation Properties of Nucleic Acid Compounds. Nucleosides, Nucleotides and Nucleotide-Phosphates in Aqueous Solution, Thermochimica Acta 387, 1–15.CrossRefGoogle Scholar
  30. Piccirilli, J. A.: 1995, Origin of Life. RNA Seeks Its Maker, Nature 376, 548–549.PubMedCrossRefGoogle Scholar
  31. Rice, J. F. and Gao, X.: 1997, Conformation of Formacetal and 3′-Thioformacetal Nucleotide Linkers and Stability of Their Antisense RNA⋅ DNA Hybrid Duplexes, Biochemistry 36, 399–411.PubMedGoogle Scholar
  32. Schöning, K. U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R. and Eschenmoser, A.: 2000, Chemical Etiology of Nucleic Acid Structure: The Alpha-Threofuranosyl-(3′→2′) Oligonucleotide System, Science 290, 1347–1351.PubMedGoogle Scholar
  33. Schwartz, A. W.: 1997, Speculation on the RNA Precursor Problem, J. theor. Biol. 187, 523–527.PubMedCrossRefGoogle Scholar
  34. Weber, A. L.: 2001, The Sugar Model: Catalysis by Amines and Amino Acid Products, Origins Life Evol. B. 31, 71–86.Google Scholar
  35. Westheimer, F. H.: 1987, Why Nature Chose Phosphates, Science 235, 1173–1178.PubMedGoogle Scholar
  36. Wiberg, K. B., Bader, R. F. W. and Lau, C. D. H.: 1987, Theoretical Analysis of Hydrocarbon Properties. 2. Additivity of Group Properties and the Origin of Strain-Energy, J. Am. Chem. Soc. 109, 1001–1012.Google Scholar
  37. Wiberg, K. B., Morgan, K. M. and Maltz, H.: 1994, Thermochemistry of Carbonyl Reactions. 6. A Study of Hydration Equilibria, J. Am. Chem. Soc. 116, 11067–11077.Google Scholar
  38. Wood, D. J., Hruska, F. E. and Ogilvie, K. K.: 1974, Proton Magnetic Resonance Studies of 2′-Deoxythmidine, Its 3′- and 5′-Monophosphates and 2′-Deoxythymidylyl-(3′,5′)-2′-Deoxythymidine in Aqueous Solution, Can. J. Chem. 52, 3353–3366.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Heather D. Bean
    • 1
  • Frank A. L. Anet
    • 2
  • Ian R. Gould
    • 3
  • Nicholas V. Hud
    • 1
  1. 1.School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaU.S.A.
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesU.S.A.
  3. 3.Department of ChemistryImperial College LondonLondon

Personalised recommendations