Origins of Life and Evolution of Biospheres

, Volume 36, Issue 1, pp 13–37

Layered Double Hydroxide Minerals as Possible Prebiotic Information Storage and Transfer Compounds

Article

Abstract

One of the fundamental difficulties when considering the origin of life on Earth is the identification of an emergent system that not only replicated, but also had the capacity to undergo discrete mutation in such a way that following generations might inherit and pass on the mutation. We speculate that the layered double hydroxide (LDH) minerals are plausible candidates for a proto-RNA molecule. We describe a hypothetical LDH-like system which, when intercalated with certain anions, forms crystals with a high degree of internal order giving rise to novel information storage structures in which replication fidelity is maintained, a concept we use to propose an explanation for interstratification in terephthalate LDHs. The external surfaces of these hypothetical crystals provide active sites whose structure and chemistry is dictated by the internal information content of the LDH. Depending on the LDH polytype, the opposing external surfaces of a crystal may give rise to reactive sites that are either complementary or mirror images of each other, and so may be chiral. We also examine similarities between these proposed “proto-RNA” structures and the DNA that encodes the hereditary information in life today, concluding with a hypothetical scenario wherein these proto-RNA molecules predated the putative RNA-world.

Keywords

anionic clay information theory layered double hydroxides RNA World terephthalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, R.: 1970, Double Layer Structures with Layer Ions (Me(II)(1−x)Me(III)(x)(OH)2)(X+) of Brucite Type, Chimia 24, 99.Google Scholar
  2. Arrhenius, G., Sales, B., Mojzsis, S. and Lee, T.: 1997, Entropy and Charge in Molecular Evolution – The Case of Phosphate, J. Theor. Biol. 187, 503–522.PubMedCrossRefGoogle Scholar
  3. Arrhenius, G. O.: 2003, Crystals and Life, Helv. Chim. Acta 86, 1569–1586.CrossRefGoogle Scholar
  4. Avery, J.: 2003, Information Theory and Evolution, World Scientific Publishing Co. Pte. Ltd., London.Google Scholar
  5. Baglioni, P. and Berti, D.: 2003, Self Assembly in Micelles Combining Stacking and H-Bonding, Curr. Opin. Colloid In. 8, 55–61.CrossRefGoogle Scholar
  6. Bellotto, M., Rebours, B., Clause, O. and Lynch, J.: 1996, A Reexamination of Hydrotalcite Crystal Chemistry, J. Phys. Chem. 100, 8527.Google Scholar
  7. Boclair, J. W., Braterman, P. S., Brister, B. D., Jiang, J. P., Lou, S. W., Wang, Z. M. and Yarberry, F.: 2001, Cyanide Self-Addition, Controlled Adsorption, and Other Processes at Layered Double Hydroxides, Orig. Life Evol. Biosph. 31, 53–69.PubMedCrossRefGoogle Scholar
  8. Bookin, A. S. and Drits, V. A.: 1993a, Polytype Diversity of the Hydrotalcite-Like Minerals .1. Possible Polytypes and their Diffraction Features, Clay Clay Min. 41, 551–557.Google Scholar
  9. Bookin, A. S., Cherkashin, V. I. and Drits, V. A.: 1993b, Polytype Diversity of the Hydrotalcite-like Minerals .2. Determination of the Polytypes of Experimentally Studied Varieties, Clay Clay Min. 41, 558–564.Google Scholar
  10. Cai, H., Hillier, A. C., Franklin, K. R., Nunn, C. C. and Ward, M. D.: 1994, Nanoscale Imaging of Molecular Adsorption, Science 266, 1551–1555.PubMedGoogle Scholar
  11. Cairns-Smith, A. G.: 1982, Genetic Takeover and the Mineral Origins of Life, Cambridge University Press, Cambridge.Google Scholar
  12. Cairns-Smith, A. G. and Braterman, P. S.: 1987, Photoprecipitation and the Banded Iron-Formations – Some Quantitative Aspects, Orig. Life. Evol. Biosph. 17, 221–228.Google Scholar
  13. Cavani, F., Trifirò, F. and Vaccari, A.: 1991, Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications, Catal. Today 11, 173–301.CrossRefGoogle Scholar
  14. Chao, G. Y. and Gault, R. A.: 1997, Quintinite-2H, Quintinite-3T, Charmarite-2H, Charmarite-3T and Caresite-3T, a New Group of Carbonate Minerals Related to the Hydrotalcite/Manasseite Group, Canadian Mineralogist 35, 1541–1549.Google Scholar
  15. Choy, J. H., Kwak, S. Y., Jeong, Y. J. and Park, J. S.: 2000, Inorganic Layered Double Hydroxides as Nonviral Vectors, Angew. Chem.-Int. Edit. 39, 4042–4045.Google Scholar
  16. Choy, J.-H., Oh, J.-M., Park, M., Sohn, K.-M. and Kim, J.-W.: 2004, Inorganic-Biomolecular Hybrid Nanomaterials as a Genetic Molecular Code System, Adv. Mater. 16, 1181–1184.CrossRefGoogle Scholar
  17. Davies, P.: 2002, How we could create life, The Guardian, 11th December.Google Scholar
  18. De Graaf, R. M., Visscher, J., Arrhenius, G. and Schwartz, A. W.: 1998, Mineral Catalysis of a Potentially Prebiotic Aldol Condensation, J. Mol. Evol. 47, 501–507.PubMedGoogle Scholar
  19. Drezdzon, M. A.: 1988, Synthesis of Isopolymetalate-Pillared Hydrotalcite via Organic-Anion Pillared Precursors, Inorg. Chem. 27, 4628–4632.CrossRefGoogle Scholar
  20. Drits, V. A. and Bookin, A. S.: 2001, Crystal Structure and X-ray Identification of Layered Double Hydroxides, in V. Rives (ed.), Layered Double Hydroxides: Present and Future, Nova Science, New York, pp. 39–92.Google Scholar
  21. Drits, V. A., Sokolova, T. N., Sokolova, G. V. and Cherkashin, V. I.: 1987, New Members of the Hydrotalcite-Manasseite Group, Clays Clay Miner. 35, 401–417.Google Scholar
  22. Ferris, J. P.: 2002, Montmorillonite Catalysis of 30–50 mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World, Orig. Life Evol. Biosph. 32, 311–332.PubMedCrossRefGoogle Scholar
  23. Fogg, A. M., Dunn, J. S. and O'Hare, D.: 1998, Formation of Second-Stage Intermediates in Anion-Exchnage Intercalation Reactions of the Layered-double Hydroxide [LiAl2(OH)6]Cl⋅H2O as Observed by Time-Resolved, in Situ X-ray Diffraction, Chem. Mater. 10, 356–360.Google Scholar
  24. Franchi, M., Ferris, J. P. and Gallori, E.: 2003, Cations as Mediators of the Adsorption of Nucleic Acids on Clay Surfaces in Prebiotic Environments, Orig. Life Evol. Biosph. 33, 1–16.PubMedCrossRefGoogle Scholar
  25. Gastuche, M. C., Brown, G. and Mortland, M. M.: 1967, Clay Miner. 7, 177.Google Scholar
  26. Génin, J.-M. R., Aïssa, R., Géhin, A., Abdelmoula, M., Benali, O., Ernsten, V., Ona-Nguema, G., Upadhyay, C. and Ruby, C.: 2005, Fougerite and FeII–III Hydroxyxcarbonate Green Rust; Ordering, Deprotonation and/or Cation Substitution; Structure of Hydrotalcite-like Compounds and Mythic Ferrosic Hydroxide Fe(OH)(2+x), Solid State Sci. 7, 545–572.Google Scholar
  27. Génin, J.-M. R. and Ruby, C.: 2004, Anion and Cation Distributions in Fe(II–III) Hydroxysalt Freen Rusts from XRD and Mössbauer Analysis (Carbonate, Chloride, Sulphate, ...); the “Fougerite” Mineral, Solid State Sci. 6, 705–718.Google Scholar
  28. Gesteland, R. F., Cech, T. R. and Atkins, J. F. (eds.): 1999, The RNA World, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  29. Greenwell, H. C.: 2001, The Synthesis and Simulation of Some Inorganic/Organic Hybrids, Certificate of Post Graduate Studies Thesis, University of Cambridge.Google Scholar
  30. Greenwell, H. C., Stackhouse, S., Coveney, P. V. and Jones, W.: 2003, A Density Functional Theory Study of Catalytic Trans-Esterification by Tert-Butoxide MgAl Anionic Clays, J. Phys. Chem. B. 107(15), 3476–3485.CrossRefGoogle Scholar
  31. Heiz, C., Radler, U. and Luisi, P. L.: 1998, Spectroscopy and Recognition Chemistry of Micelles from Monoalkyl Phosphoryl Nucleosides, J. Phys. Chem. B. 102, 8686–8691.CrossRefGoogle Scholar
  32. Hofmeister, W. and von Platen, H.: 1992, Crystal Chemistry and Atomic Order in Brucite-Related Double-Layer Structures, Cryst. Rev. 3, 3–29.Google Scholar
  33. Horowitz, N. H.: 1959, On defining life, in F. Clark and R. L. M. Synge (eds.), The Origin of Life on Earth, Pergamon, London, pp. 109–117.Google Scholar
  34. Hou, X. Q. and Kirkpatrick, R. J.: 2002, Interlayer Structure and Dynamics of ClO4 Layered Double Hydroxides, Chem. Mat. 14(3), 1195–1200.Google Scholar
  35. Hou, X. Q., Kirkpatrick, R. J., Yu, P., Moore, D. and Kim, Y.: 2000, 15N NMR Study of Nitrate ion Structure and Dynamics in Hydrotalcite-like Compounds, Am. Miner. 85(1), 173–180.Google Scholar
  36. Hou, X. Q. and Kirkpatrick, R. J.: 2000, Solid-state Se77 NMR and XRD Study of the Structure and Dynamics of Seleno-Oxyanions in Hydrotalcite-Like Compounds, Chem. Mater. 21(7), 1890–1897.Google Scholar
  37. Huang, W. and Ferris, J. P.: 2003, Synthesis of 35–40 mers of RNA Oligomers from Unblocked Monomers: A Simple Approach to the RNA World, Chem. Commun. 12, 1458–1459.Google Scholar
  38. Huang, Z. and Benner, S. A.: 2002, Oligodeoxyribonucleotide Analogues with Bridging Dimethylene Sulfide, Sulfoxide, and Sulfone Groups. Toward a Second-Generation Model of Nucleic Acid Structure, J. Org. Chem. 67, 3996.Google Scholar
  39. Joyce, G. F.: 2002, The Antiquity of RNA-Based Evolution, Nature 418, 214–221.PubMedCrossRefGoogle Scholar
  40. Kalinichev, A. G., Amonette, J. E. and Kirkpatrick, R. J.: 2003, Interlayer Structure and Dynamics of Cl Bearing Hydrotalcite: Far Infrared Spectroscopy and Molecular Dynamics Modelling, Am. Miner. 88(2–3), 398–409.Google Scholar
  41. Kooli, F., Chisem, I. C., Vucelic, M. and Jones, W.: 1996, Synthesis and Properties of Terephthalate and Benzoate Intercalates of Mg-Al Layered Double Hydroxides Possessing Varying Layer Charge, Chem. Mat. 8, 1969–1977.Google Scholar
  42. Lotsch, B., Millange, F., Walton, R. I. and O'Hare, D.: 2001, Separation of Nucleoside Monophosphates using Preferential Anion Exchange Intercalation in Layered Double Hydroxides, Solid State Sci. 3, 883–886.CrossRefGoogle Scholar
  43. Martin, W. and Russell, M. J.: 2003, On the Origin of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells, Phil. Trans. R. Soc. Lond. B 358, 59–85.CrossRefGoogle Scholar
  44. Maxwell, R. S., Kukkadapu, R. K., Amonette, J. E. and Cho, H.: 1999, 2H Solid-State NMR Investigation of Terephthalate Dynamics and Orientation in Mixed-Anion Hydrotalcite-Like Compounds, J. Phys. Chem. B. 103, 5197–5203.CrossRefGoogle Scholar
  45. Miyakawa, S. and Ferris, J. P.: 2003, Sequence- and Regio-Selectivity in the Montmorillonite-Catalyzed Synthesis of RNA, J. Am. Chem. Soc. 125(27), 8202–8208.PubMedCrossRefGoogle Scholar
  46. Newman, S. P. and Jones, W.: 1998, Synthesis, Characterization and Applications of Layered Double Hydroxides Containing Organic Guests, New J. Chem. 22, 105–115.CrossRefGoogle Scholar
  47. Newman, S. P., Williams, S. J., Coveney, P. V. and Jones, W.: 1998, Interlayer Arrangement of Hydrated MgAl Layered Double Hydroxides Containing Guest Terephthalate Anions: Comparison of Simulation and measurement, J. Phys. Chem. B 102, 6710–6719.CrossRefGoogle Scholar
  48. Newman, S. P., Greenwell, H. C., Coveney, P. V. and Jones, W.: 2001 Computer Modelling of Layered Double Hydroxides, in V. Rives (ed.), Layered Double Hydroxides: Present and Future, Nova Science, New York, pp. 39–92.Google Scholar
  49. Ogawa M. and Asai, S.: 2000, Hydrothermal Synthesis of Layered Double Hydroxide-Deoxycholate Intercalation Compounds, Chem. Mater. 12, 3253–3254.CrossRefGoogle Scholar
  50. Orgel, L. E.: 2004, Prebiotic Chemistry and the Origin of the RNA World, Crit. Rev. Biochem. Mol. Bio. 39, 99–123.Google Scholar
  51. Pitsch, S., Eschenmoser, A., Gedulin, B., Hui, S. and Arrhenius, G.: 1995, Mineral Induced Formation of Sugar Phosphates, Orig. Life Evol. Biosph. 25, 297–334.PubMedCrossRefGoogle Scholar
  52. Pitsch, S., Krishnamurthy, K. and Arrhenius, G.: 2000, Concentration of Simple Aldehydes by Sulfite-Containing Double-layer Hydroxide Minerals: Implications for Biopoesis, Helv. Chim. Acta 83, 2398–2411.PubMedCrossRefGoogle Scholar
  53. Porter, T. L., Eastman, M. P., Bain, E. and Begay, S.: 2001, Analysis of Peptides Synthesized in the Presence of Saz-1 Montmorillonite and Cu2+ Exchanged Hectorite, Biophys. Chem. 91, 115–124.PubMedCrossRefGoogle Scholar
  54. Reichle, W. T.: 1986, Synthesis of Anionic Clay Minerals (Mixed Metal Hydroxides, Hydrotalcite), Solid State Ionics, 22, 135–141.CrossRefGoogle Scholar
  55. Ricardo, A., Carrigan, M. A., Olcott, A. N. and Benner, S. A.: 2004, Borate Minerals Stabilize Ribose. Science 303, 196.PubMedCrossRefGoogle Scholar
  56. Rode, B. M.: 1999, Peptides and the Origin of Life, Peptides 20, 773–786.PubMedGoogle Scholar
  57. Roussel, H., Biois, V., Elkaim, E., de Roy, A. and Besse, J. P.: 2000, Cationic Order and Structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] Layered Double Hydroxides: A XRD and EXAFS Study, J. Phys. Chem. B. 104, 5915–5923.CrossRefGoogle Scholar
  58. Sels, B., De Vos, D., Buntinx, M., Pierard, F., Kirsch-De Mesmaeker, A. and Jacobs, P.: 1999, Layered Double Hydroxides Exchanged with Tungstanate as Biomimetic Catalysts for Mild Oxidative Bromination, Nature 400, 855–857.Google Scholar
  59. Sels, B .F., De Vos, D. E., Buntinx, M. and Jacobs, P. A.: 2003, Transition Metal Anion Exchanged Layered Double Hydroxides as a Bioinspired Model of Vanadium Bromoperoxidase, J. Catalysis 216, 288–299.CrossRefGoogle Scholar
  60. Shichi, T., Takagi, K. and Sawaki, Y.: 1996, Stereoselective Control of [2+2] Photocycloaddition by Changing Site Distances of Hydrotalcite Interlayers, Chem. Commun. 2027–2028.Google Scholar
  61. Takagi, K., Shichi, T., Usami, H. and Sawaki, Y.: 1993, Controlled Photocycloaddition of Unsaturated Carboxylates Intercalated in Hydrotalcite Clay Interlayers, J. Am. Chem. Soc. 115, 4339–4344.CrossRefGoogle Scholar
  62. Tichit, D., Ribet, S. and Coq, B.: 2001, Characterization of Calcined and Reduced Multi-Component Co-Ni-Mg-Al Layered Double Hydroxides, Eur. J. Inorg. Chem. 2, 539–546.Google Scholar
  63. Trave, A., Selloni, A., Goursot, A., Tichit, D. and Weber, J.: 2002, First Principles Study of the Structure and Chemistry of Mg-Based Hydrotalcite-Like Anionic Clays, J. Phys. Chem. B. 106, 12291–12296.CrossRefGoogle Scholar
  64. Wächtershäuser, G.: 1994, Life in a Ligand Sphere, Proc. Natl. Acad. Sci. USA 91, 4283–4287.PubMedGoogle Scholar
  65. Wattis, J. A. D. and Coveney, P. V.: 1997, General Nucleation Theory with Inhibition for Chemically Reacting Systems, J. Chem. Phys. 106, 9122–9140.CrossRefGoogle Scholar
  66. Wattis, J. A. D. and Coveney, P. V.: 1999, The Origin of the RNA World: A Kinetic Model, J. Phys. Chem. B 103, 4231–4250.CrossRefGoogle Scholar
  67. Wattis, J. A. D. and Coveney, P. V.: 2004, Symmetry-Breaking in Chiral Polymerisation, Orig. Life Evol. Biosph. In Press.Google Scholar
  68. Xiao, Y., Thorpe, M. F. and Parkinson, J. B.: 1999, Two-Dimensional Discrete Coulomb Alloy, Phys. Rev. B. 59, 277–285.Google Scholar
  69. Xu, Z. P., Braterman, P. S., Yu, K., Xu, H. F., Wang, Y. F. and Brinker, C. J.: 2004, Unusual Hydrocarbon Chain Packing Mode and Modification of Crystallite Growth Habit in the Self-Assembled Nanocomposites Zinc-Aluminium-Hydroxide Oleate and Elaidate (cis- and trans-[Zn2Al(OH)6(CH3(CH2)7CH—CH(CH2)7COO)] and Magnesium Analogues, Chem. Mater. 16(14), 2750–2756.CrossRefGoogle Scholar
  70. Yao, K., Taniguchi, M., Nakata, M., Takahashi, M. and Yamagishi, A.: 1998a, Nanoscale Imaging of Molecular Adsorption of Metal Complexes on the Surface of a Hydrotalcite Crystal, Langmuir 14, 2410–2414.Google Scholar
  71. Yao, K., Taniguchi, M., Nakata, M., Takahashi, M. and Yamagishi, A.: 1998b, Electrochemical Scanning Tunnelling Microscopy Observation of Ordered Surface Layers on an Anionic Clay-Modified Electrode, Langmuir 14, 2890–2895.Google Scholar
  72. Zubay, G.: 2000, Origins of Life on the Earth and in the Cosmos, 2nd Edition, Academic Press, London.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Centre for Computational Science, Christopher Ingold LaboratoryUniversity College LondonLondonU.K.
  2. 2.Centre for Applied Marine Sciences, Marine Science Laboratories, School of Ocean SciencesUniversity of Wales BangorAngleseyUK

Personalised recommendations