Origins of Life and Evolution of Biospheres

, Volume 35, Issue 4, pp 333–343 | Cite as

Evolving lipid vesicles in prebiotic hydrothermal environments

  • Ryo Furuuchi
  • Ei-Ichi Imai
  • Hajime Honda
  • Kuniyuki Hatori
  • Koichiro Matsuno
Article

Abstract

We compared three different kinds of lipid vesicles made of saturated fatty acids, unsaturated fatty acids, and phospholipids for their evolutionary capabilities in a simulated hydrothermal environment.Encapsulation of the glycine monomers enhanced the oligomerization of peptides in all cases. Fatty acid vesicles remained stable at higher temperatures and efficiently utilized heat energy for this synthetic reaction. Phospholipid vesicles were destabilized by higher temperatures, and thus were found to be better suited to enhance synthetic reactions at lower temperatures

Keywords

decanoic acid fatty acid lipid oleic acid phospholipid vesicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, C. L., Deamer, D. W. and Mautner, M. N.: 2002, Self-Assembled Vesicles of Monocarboxylic Acids and Alcohols: Conditions for Stability and for the Encapsulation of Biopolymers, Biochim. Biophys. Acta 1559, 1–9.PubMedGoogle Scholar
  2. Apel, C. L.: 2003. Private communication.Google Scholar
  3. Bangham, A. D., Standish, M. M. and Watkins, J. C.: 1965, Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids, J. Mol. Biol. 13, 238–252.PubMedGoogle Scholar
  4. Deamer, D. W. and Oro, J.: 1980, Role of Lipids in Prebiotic Structures, BioSystems 12, 167–175.CrossRefPubMedGoogle Scholar
  5. Imai, E., Honda, H., Hatori, K., Brack, A. and Matsuno, K.: 1999a, Elongation of Oligopeptides in a Simulated Submarine Hydrothermal System, Science 283, 831–833.CrossRefGoogle Scholar
  6. Luisi, P. L., Walde, P. and Oberholzer, T.: 1999, Lipid Vesicles as Possible Intermediates in the Origin of Life, Current Opinion Coll. Interface Sci. 4, 33–39.CrossRefGoogle Scholar
  7. Matsuno, K.: 1997, A Design Principle of a Flow Reactor Simulating Prebiotic Evolution, Viva Origino 25, 191–204.Google Scholar
  8. McCollom, T. M., Ritter, G. and Simoneit, B. R.: 1999, Lipid Synthesis Under Hydrothermal Conditions by Fischer-Tropsch-Type Reactions, Orig Life Evol Biosphere 29, 153–166.CrossRefGoogle Scholar
  9. Monnard, P. A., Apel, C. L., Kanavarioti, A. and Deamer, D. W.: 2002, Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium, Astrobiology 2, 139–152.CrossRefPubMedGoogle Scholar
  10. Rushdi, A. I. and Simoneit, B. R.: 2001, Lipid Formation by Aqueous Fischer-Tropsch-Type Synthesis over a Temperature Range of 100 to 400 Degrees C, Origins Life Evol. Biosphere 31, 103–118.CrossRefGoogle Scholar
  11. Terada, R., Imai, E., Honda, H., Hatori, K. and Matsuno, K.: 1999, Fixation of Carbon Dioxide in Hydrothermal Environments: Synthesis of Formic and Acetic Acids, Viva Origino 27, 197–208.Google Scholar
  12. Tsukahara, H., Imai, E., Honda, H., Hatori, K. and Matsuno, K.: 2002, Prebiotic Oligomerization on or Inside Lipid Vesicles in Hydrothermal Environments, Origins Life Evol. Biosphere 32, 13–21. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Ryo Furuuchi
    • 1
  • Ei-Ichi Imai
    • 1
  • Hajime Honda
    • 1
  • Kuniyuki Hatori
    • 1
  • Koichiro Matsuno
    • 1
  1. 1.Department of BioEngineeringNagaoka University of TechnologyNagaokaJapan

Personalised recommendations