Advertisement

Origins of Life and Evolution of Biospheres

, Volume 35, Issue 3, pp 243–273 | Cite as

Symmetry-breaking in Chiral Polymerisation

  • Jonathan A. D. WattisEmail author
  • Peter V. Coveney
Chirality

Abstract

We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to ‘poisoning’ by the opposite-handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable.

The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomers and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.

Keywords

autocatalysis bifurcations chiral polymerisation cross-catalysis growth kinetics symmetry-breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergè, P., Pomeau, Y. and Vidal, C.: 1984, Order Within Chaos, Hermann and John Wiley, Paris.Google Scholar
  2. Blocher, M., Hitz, T. and Luisi, P. L.: 2001, Stereoselectivity in the Oligomerisation of Racemic Tryptophan N-Carboxyanhydride (NCA-Trp) as Determined by Isotope Labeling and Mass Spectrometry, Helv. Chim. Acta. 84, 842–848.CrossRefGoogle Scholar
  3. Bolton, C. D. and Wattis, J. A. D.: 2004, The Becker-Doring Equations with Input, Competition and Inhibition, J. Phys. A; Math. Gen. 37, 1971–1986.Google Scholar
  4. Brandenburg, A., Andersen, A. C., Höfner, S. and Nilsson, M.: 2005, Homochiral Growth through Enantiomeric Cross-inhibition, Orig. Life Evol. Biosph. 35, this issue, 225–241.Google Scholar
  5. Colonna, S., Fleischecker, G. R. and Luisi, P. L.: 1994, Self-Production of Supramolecular Structures: From Synthetic Structures to Models of Minimal Living Systems, NATO ASI series, Kluwer, Dordrecht.Google Scholar
  6. Coveney, P. V.: 1994, ‘Chemical Oscillations and Nonlinear Chemical Kinetics,’ in G. Fleischaker, S. Colonna and P. L. Luisi, (eds), Self-Production of Supramolecular Structures, NATO ASO Series, Kluwer, Dordrecht, pp. 157–176.Google Scholar
  7. Coveney, P. V. and Wattis, J. A. D.: 1996, Analysis of a Generalized Becker-Doring Model of Self-Reproducing Micelles, Proc. Roy. Soc. Lond. A 452, 2079–2102.Google Scholar
  8. Guckenheimer, J. and Holmes, P.: 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York.Google Scholar
  9. Hitz, T., Blocher, M., Walde, P. and Luisi, P. L.: 2001, Stereoselectivity Aspects in the Condensation of Racemic NCA-Amino Acids in the Presence and Absence of Liposomes, Macromolecules 34, 2443–2449. %Luisi - exps on chiral polymersCrossRefGoogle Scholar
  10. Hitz, T. and Luisi, P. L.: 2002, Enhancement of Homochirality in Oligopeptides by Quartz, Helv. Chim. Acta. 85, 3975–3983.CrossRefGoogle Scholar
  11. Hitz, T. and Luisi, P. L.: 2003, Chiral Amplification of Oligopeptides in the Polymerization of Alpha-Amino Acid N-Carboxyanhydrides in water, Helv. Chim. Acta. 86, 1423–1434.CrossRefGoogle Scholar
  12. Joshi, P., Pitsch, S. and Ferris, J. P.: 2000, Homochiral Selection in the Montmorillonite-Catalysed and Uncatalysed Prebiotic Synthesis of RNA, Chem. Commun. 24, 2497–2498.CrossRefGoogle Scholar
  13. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L. E. and van Westrenen, J.: 1984, Chiral Selection in Poly(C)-Directed Synthesis of Oligo(G), Nature 310, 602–604.CrossRefPubMedGoogle Scholar
  14. Jung, G.: 1992, Proteins from the D-Chiral World, Angew Chem. Int. Ed. Engl. 31, 1457–1459.CrossRefGoogle Scholar
  15. Murray, J. D.: 1989, Mathematical Biology, Springer, Berlin.Google Scholar
  16. Sandars, P. G. H.: 2002, Is Extraterrestrial Life Homochiral? Abs. Pap. Am. Chem. Soc. 224, 110-PHYS Pt2.Google Scholar
  17. Sandars, P. G. H.: 2003, A Toy Model for the Generation of Homochirality During Polymerisation, Origins Life Evol. Bios. 33, 575–587.CrossRefGoogle Scholar
  18. Todd, M. H.: 2002, Asymmetric Autocatalysis: Product Recruitment for the Increase in the Chiral Environment (PRICE), Chem. Soc. Rev. 31, 211–222.CrossRefPubMedGoogle Scholar
  19. Wattis, J. A. D.: 1999, A Becker-Doring Model of Competitive Nucleation, J. Phys. A: Math. Gen. 32, 8755–8784.CrossRefGoogle Scholar
  20. Wattis, J. A. D. and Coveney, P. V.: 1997, Generalised Nucleation Theory with Inhibition for Chemically Reacting Systems, J. Chem. Phys. 106, 9122–9140.CrossRefGoogle Scholar
  21. Wattis, J. A. D. and Coveney, P. V.: 1999, The Origin of the RNA World: A Kinetic Model, J. Phys. Chem. B. 103, 4231–4250.CrossRefGoogle Scholar
  22. Wattis, J. A. D. and Coveney, P. V.: in preparation, Growth-Rate Dependence of Sequences in Copolymerisation.Google Scholar
  23. Zubay, G. L.: 2000, The Origins of Life on Earth and in the Cosmos, 2nd ed., Academic Press, San Diego, London.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Theoretical Mechanics, School of Mathematical SciencesUniversity of NottinghamUniversity ParkU.K.
  2. 2.Centre for Computational Science, Department of ChemistryUniversity College LondonLondonU.K.

Personalised recommendations