pp 1–29 | Cite as

Varieties of Regular Pseudocomplemented de Morgan Algebras

  • M. E. Adams
  • H. P. SankappanavarEmail author
  • Júlia Vaz de Carvalho


In this paper, we investigate the varieties Mn and Kn of regular pseudocomplemented de Morgan and Kleene algebras of range n, respectively. Priestley duality as it applies to pseudocomplemented de Morgan algebras is used. We characterise the dual spaces of the simple (equivalently, subdirectly irreducible) algebras in Mn and explicitly describe the dual spaces of the simple algebras in M1 and K1. We show that the variety M1 is locally finite, but this property does not extend to Mn or even Kn for n ≥ 2. We also show that the lattice of subvarieties of K1 is an ω + 1 chain and the cardinality of the lattice of subvarieties of either K2 or M1 is 2ω. A description of the lattice of subvarieties of M1 is given.


Variety of algebras Lattice of subvarieties Regular pseudocomplented de Morgan algebra (of range nDiscriminator variety Simple algebra Subdirectly irreducible algebra Priestley duality 

Mathematics Subject Classification (2010)

Primary: 06D30, 06D15, 03G25 Secondary: 08B15, 06D50, 03G10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through the projects UID/MAT/00297/2013 and UID/MAT/00297/2019 (Centro de Matemática e Aplicações).


  1. 1.
    Adams, M.E., Sankappanavar, H.P., Vaz de Carvalho, J.: Regular double p-algebras. Math. Slovaca 69, 15–34 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)zbMATHGoogle Scholar
  3. 3.
    Beazer, R.: The determination congruence on double p-algebras. Algebra Universalis 6, 121–129 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)CrossRefGoogle Scholar
  5. 5.
    Cornish, W.H., Fowler, P.R.: Coproducts of De Morgan algebras. Bull. Austral. Math. Soc. 16, 1–13 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cornish, W.H., Fowler, P.R.: Coproducts of Kleene algebras. J. Austral. Math. Soc. Ser. A 27, 209–220 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Denecke, K.: Functional completeness in pseudocomplemented De Morgan algebras. Beitr. Algebra Geom. 24, 135–150 (1987)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gaitán, H.: Free algebras in certain varieties of distributive pseudocomplemented De Morgan algebras. Math. Log. Quart. 44, 553–567 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guzmán, F., Squier, C.: Subdirectly irreducible and free Kleene-Stone algebras. Algebra Universalis 31, 266–273 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kalman, J.A.: Lattices with involution. Trans. Amer. Math. Soc. 87, 485–491 (1958)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Koubek, V., Sichler, J.: Categorical universality of regular double p-algebras. Glasgow Math. J. 32, 329–340 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Katrinák, T.: The structure of distributive double p-algebras. Regularity and congruences. Algebra Universalis 3, 238–246 (1973)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mal’cev, A.: Algebraicheskie Systemi [in Russian], Nauka Press, Moscow, 1970. English Translation: Algebraic Systems. Academie, Berlin (1973)Google Scholar
  15. 15.
    McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices Varieties, vol. 1. Wadsworth & Brooks/Cole, California (1987)zbMATHGoogle Scholar
  16. 16.
    Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Priestley, H.A.: The construction of spaces dual to pseudocomplemented distributive lattices. Quart. J. Math. Oxford Ser. (2) 26, 215–228 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Priestley, H.A.: Ordered Sets and Duality for Distributive Lattices, Orders: Description and Roles (L’Arbresle, 1982), vol. 99, pp 39–60. North-Holland Math Stud., North-Holland (1984)Google Scholar
  19. 19.
    Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element. Summa Brasil. Math. 2, 43–49 (1949)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Romanowska, A.: Subdirectly irreducible pseudocomplemented De Morgan algebras. Algebra Universalis 12, 70–75 (1981)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sankappanavar, H.P.: Pseudocomplemented Ockham and De Morgan algebras. Z. Math. Logik Grundlag. Math. 32, 385–394 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sankappanavar, H.P.: Principal congruences of pseudocomplemented De Morgan algebras. Z. Math. Logik Grundlag. Math. 33, 3–11 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sankappanavar, H.P.: Heyting algebras with a dual lattice endomorphism. Z. Math. Logik Grundlag. Math. 33, 565–573 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sankappanavar, H.P., Vaz de Carvalho, J.: Congruence properties of pseudocomplemented De Morgan algebras. Math. Log. Quart. 60, 425–436 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Taylor, C.J.: Algebras of incidence structures: representations of regular double p-algebras. Algebra Universalis 76, 479–491 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Varlet, J: Algèbres de Lukasiewicz trivalentes. Bull. Soc. Roy. Sci. Liè,ge 36, 399–408 (1968)zbMATHGoogle Scholar
  27. 27.
    Varlet, J.: A regular variety of type < 2, 2, 1, 1, 0, 0 >. Algebra Universalis 2, 218–223 (1972)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, X.P., Wang, L.B.: The lattices of kernel ideals in pseudocomplemented De Morgan algebras. Order 34, 23–35 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • M. E. Adams
    • 1
  • H. P. Sankappanavar
    • 1
    Email author
  • Júlia Vaz de Carvalho
    • 2
  1. 1.Department of MathematicsState University of New YorkNew PaltzUSA
  2. 2.Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal

Personalised recommendations