pp 1–21 | Cite as

Ambiguous Representations of Semilattices, Imperfect Information, and Predicate Transformers

  • Oleh NykyforchynEmail author
  • Oksana Mykytsey
Open Access


Crisp and lattice-valued ambiguous representations of one continuous semilattice in another one are introduced and operation of taking pseudo-inverse of the above relations is defined. It is shown that continuous semilattices and their ambiguous representations, for which taking pseudo-inverse is involutive, form categories. Self-dualities and contravariant equivalences for these categories are obtained. Possible interpretations and applications to processing of imperfect information are discussed.


Ambiguous representation Continuous semilattice Duality of categories Imperfect information 



  1. 1.
    Akian, M.: Densities of invariant measures and large deviations. Trans. Amer. Math. Soc. 351(11), 4515–4543 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bergmann, M.: Introduction to many-valued and fuzzy logic: Semantics, algebras, and derivation systems. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. Bull. Symb. Logic 3(4), 401–452 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Erné, M.: Z-distributive function spaces preprint (1998)Google Scholar
  5. 5.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., Lattices, Continuous: Domains encyclopedia of mathematics and its applications, vol. 93. Cambridge University Press, New York (2003)Google Scholar
  6. 6.
    Cohen, G., Gaubert, S., Quadrat J.-P.: Duality and separation theorems in idempotent semimodules. arXiv:math/0212294v2 [math.FA], 29 (2003)
  7. 7.
    Hájek, P.: Fuzzy logics with noncommutative conjuctions. J. Logic Computation 13(4), 469–479 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Heckmann, R., Huth, M.: A duality theory for quantitative semantics. In: Proceedings of the 11th International Workshop on Computer Science Logic, vol. 1414 of Lecture Notes in Computer Science. Springer Verlag, 255–274 (1998)Google Scholar
  9. 9.
    Johnstone, P.T.: Stone spaces Cambridge studies in advanced mathematics, vol. 3. Cambridge University Press, New York (1983)Google Scholar
  10. 10.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  11. 11.
    Melliès, P.-A.: Dialogue categories and chiralities. Publ. Res. Inst. Math. Sci. 52(4), 359–412 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nykyforchyn, O.R.: Capacities with values in compact Hausdorff lattices. Appl. Categ. Struct. 15(3), 243–257 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nykyforchyn, O., Mykytsey, O.: Conjugate measures on semilattices. Visnyk Lviv Univ. 72, 221–231 (2010)zbMATHGoogle Scholar
  14. 14.
    Nykyforchyn, O., Mykytsey, O.: L-idempotent linear operators between predicate semimodules, dual pairs and conjugate operator. Mathematical Bulletin of the Shevchenko Scientific Society 8, 299–314 (2011)zbMATHGoogle Scholar
  15. 15.
    Nykyforchyn, O., Repovš, D.: Ambiguous representations as fuzzy relations between sets. Fuzzy Set. Syst. 173, 25–44 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nykyforchyn, O.R., Repovš, D.: L-fuzzy strongest postcondition predicate transformers as L-idempotent linear or affine operators between semimodules of monotonic predicates. Fuzzy Set. Syst. 208, 67–78 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Scott, D.S. Nielsen, M., Schmidt, E.M. (eds.): Domains for denotational semantics. Springer, Berlin (1982)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of MathematicsKasimir the Great University in BydgoszczBydgoszczPoland
  2. 2.Department of Mathematics and Computer ScienceVasyl’ Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine

Personalised recommendations