pp 1–5 | Cite as

Some Remarks on Nestings in the Normalized Matching Posets of Rank 3

  • Yu-Lun Chang
  • Wei-Tian LiEmail author


In 1970s, Griggs conjectured that every normalized matching rank-unimodal poset has a nested chain decomposition. This conjecture is proved to be true only for some posets of small ranks (Wang Discrete Math. 145(3), 493–497, 2005; Hsu et al. Discrete Math. 309(3), 521–531, 2009; Escamilla et al. Order 28, 357–373, 2011). In this paper, we provide some sufficient conditions on the rank numbers of posets of rank 3 to satisfy the Griggs’s conjecture by refining the proofs in the two papers (Hsu et al. Discrete Math. 309(3), 521–531, 2009; Escamilla et al. Order 28, 357–373, 2011).


Nested chain decomposition Normalized matching posets Griggs nesting conjecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, I.: Some Problems in Combinatorial Number Theory. Ph.D. Thesis University of Nottingham, Nottingham (1967)Google Scholar
  2. 2.
    Anderson, I.: Combinatorics of Finite Sets. Dover Publications, New York (2002)zbMATHGoogle Scholar
  3. 3.
    Engel, K.: Sperner Theory. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  4. 4.
    Escamilla, E.G., Nicolae, A.C., Salerno, P.R., Shahriari, S., Tirrell, J.O.: On nested chain decompositions of normalized matching posets of rank 3. Order 28, 357–373 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Griggs, J.R.: Sufficient conditions for a symmetric chain order. SIAM J. Appl. Math. 32, 807–809 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Griggs, J.R.: On chains and Sperner k-families in ranked posets. J. Combin. Theory A 28, 156–168 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Griggs, J.R.: Problems on chain partitions. Discrete Math. 72, 157–162 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hall, P.: On representative of subsets. J. London Math. Soc. 10, 26–30 (1935)CrossRefGoogle Scholar
  9. 9.
    Hsu, T., Logan, M., Shahriari, S.: Methods for nesting rank 3 normalized matching rank-unimodal posets. Discrete Math. 309(3), 521–531 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, Y.: Nested chain partitions of LYM posets. Discrete Math. 145(3), 493–497 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations