, Volume 36, Issue 1, pp 77–97 | Cite as

Some Invariant Skeletons for -u Groups and MV-Algebras

  • Antonio Di Nola
  • Giacomo LenziEmail author
  • Anna Carla Russo


In this paper we study some invariants for MV-algebras and thanks to Mundici’s equivalence we transfer these invariants to -groups with strong unit. In particular, we prove that, as it happens to MV-algebras, every -u group has two families of skeletons, which we call the n-skeletons and the \({}_{n}^{\omega }\)-skeletons. Then we study the classes of -u groups (and of MV-algebras) which coincide with the union of such skeletons, called here ω-skeletal and \({}_{\omega }^{\omega }\)-skeletal -u groups (resp. MV-algebras). We also analyze the problem of axiomatizing in terms of geometric theories or theories of presheaf type these classes of -u groups (and of MV-algebras).


MV-algebra Lattice ordered Abelian group with strong unit Skeleton Geometric theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Springer Lecture Notes in Mathematics, Berlin (1977)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caramello, O.: Universal models and definability. Math. Proc. Camb. Philos. Soc. 152, 279–302 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caramello, O.: Theories, Sites, Toposes: Relating and Studying Mathematical Theories Through Topos-Theoretic ‘Bridges’. Oxford University Press, London (2017)zbMATHGoogle Scholar
  4. 4.
    Caramello, O., Russo, A.C.: The Morita-equivalence between MV-algebras and lattice-ordered Abelian groups with strong unit. Journal of Algebra 422, 752–787 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caramello, O., Russo, A.C.: On the geometric theory of local MV-algebras. Journal of Algebra 479, 263–313 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math. Soc. 93, 74–90 (1959)zbMATHGoogle Scholar
  8. 8.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cignoli, R., Dubuc, E.J., Mundici, D.: Extending Stone duality to multisets and locally finite MV-algebras. Journal of Pure and Applied Algebra 189, 37–59 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Di Nola, A., Lettieri, A.: Equational characterization of all varieties of MV-algebras. Journal of Algebra 221, 463–474 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Di Nola, A., Lettieri, A.: One chain generated varieties of MV-algebras. Journal of Algebra 225, 667–697 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Nola, A., Esposito, I., Gerla, B.: Local algebras in the representation of MV-algebras. Algebra Universalis 56, 133–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium, vol. 1-2. Oxford University Press, New York-Oxford (2002)zbMATHGoogle Scholar
  14. 14.
    McLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: a First Introduction to Topos Theory. Springer, New York (1992)Google Scholar
  15. 15.
    Mundici, D.: Interpretation of AF C-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mundici, D.: Advanced Łukasiewicz Calculus and MV-Algebras. Springer, Dordrecht (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Antonio Di Nola
    • 1
    • 2
  • Giacomo Lenzi
    • 1
    Email author
  • Anna Carla Russo
    • 3
  1. 1.University of SalernoFiscianoItaly
  2. 2.I.I.A.S.S. “E. R. Caianiello”Vietri sul mareItaly
  3. 3.PaganiItaly

Personalised recommendations