, Volume 35, Issue 2, pp 363–391 | Cite as

Grid Intersection Graphs and Order Dimension

  • Steven Chaplick
  • Stefan Felsner
  • Udo HoffmannEmail author
  • Veit Wiechert


We study subclasses of grid intersection graphs from the perspective of order dimension. We show that partial orders of height two whose comparability graph is a grid intersection graph have order dimension at most four. Starting from this observation we provide a comprehensive study of classes of graphs between grid intersection graphs and bipartite permutation graphs and the containment relation on these classes. Order dimension plays a role in many arguments.


Order dimension Grid intersection graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We like to thank the reviewers for useful comments.


  1. 1.
    Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations of a planar point set. J. Comb. Theory Series A 113, 1072–1091 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adiga, A., Bhowmick, D., Chandran, L.S.: Boxicity and poset dimension. SIAM J. Discret. Math. 25, 1687–1698 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. Discret. Comput. Geom. 50, 771–783 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Catanzaro, D., Chaplick, S., Felsner, S., Halldórsson, B.V., Halldórsson, M.M., Hixon, T., Stacho, J.: Max-point-tolerance graphs. Discret. Appl. Math. 216, 84–97 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom. 47, 112–124 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chaplick, S., Cohen, E., Morgenstern, G.: Stabbing polygonal chains with rays is hard to approximate. In: Proceedings of the 25th Canadian Conference on Computational Geometry. (2013)
  7. 7.
    Chaplick, S., Hell, P., Otachi, Y., Saitoh, T., Uehara, R.: Intersection dimension of bipartite graphs. In: TAMC, vol. 8402 of LNCS, pp. 323–340. Springer, Berlin (2014)Google Scholar
  8. 8.
    Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles intersecting a monotone curve. Comput. Geom. 46, 1036–1041 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cobos, F.J., Dana, J.C., Hurtado, F., Márquez, A., Mateos, F.: On a visibility representation of graphs. In: Graph Drawing, vol. 1027, LNCS, pp. 152–161. Springer (1996)Google Scholar
  10. 10.
    Cogis, O.: On the Ferrers dimension of a digraph. Discret. Math. 38, 47–52 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Correa, J.R., Feuilloley, L., Soto, J.: Independent and hitting sets of rectangles intersecting a diagonal line. In: LATIN, vol. 8392, LNCS, pp. 35–46. Springer (2014)Google Scholar
  12. 12.
    Dushnik, B., Miller, E.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Felsner, S.: Exploiting air-pressure to map floorplans on point sets. J. Graph Alg. Appl. 18, 233–252 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Felsner, S.: The order dimension of planar maps revisited. SIAM J. Discret. Math. 28, 1093–1101 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Felsner, S., Mustaţă, I., Pergel, M.: The complexity of the partial order dimension problem – closing the gap. SIAM J. Discret. Math. 31, 172–189 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Felsner, S., Nilsson, J.: On the order dimension of outerplanar maps. Order 28, 415–435 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Felsner, S., Trotter, W.T.: Posets and planar graphs. J. Graph Theory 49, 273–284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Halldȯrsson, B.V., Aguiar, D., Tarpine, R., Istrail, S.: The clark phaseable sample size problem: Long-range phasing and loss of heterozygosity in GWAS. J. Comput. Biol. 18, 323–333 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hixon, T.: Hook graphs and more: some contributions to geometric graph theory, masters thesis TU Berlin (2013)Google Scholar
  20. 20.
    Hoffmann, U.: Intersection Graphs and Geometric Objects in the Plane. PhD thesis, TU Berlin (2016)Google Scholar
  21. 21.
    Katz, M.J., Mitchell, J.S., Nir, Y.: Orthogonal segment stabbing. Comput. Geom. 30, 197–205 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kostochka, A.V., Neṡetṙil, J.: Coloring relatives of intervals on the plane, i: chromatic number versus girth. Eur. J. Comb. 19, 103–110 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discret. Appl. Math. 52, 233–252 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mustaţă, I., Pergel, M.: Unit grid intersection graphs: Recognition and properties. arXiv:1306.1855 (2013)
  25. 25.
    Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shrestha, A.M.S., Takaoka, A., Satoshi, T.: On two problems of nano-PLA design. IEICE Trans. Inf. Syst. 94, 35–41 (2011)CrossRefGoogle Scholar
  27. 27.
    Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discret. Appl. Math. 158, 1650–1659 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sinden, F.W.: Topology of thin film RC circuits. Bell Syst. Tech. J. 45, 1639–1662 (1966)CrossRefzbMATHGoogle Scholar
  29. 29.
    Soto, M., Thraves, C.: p-box: A new graph model. Discret. Math. Theor. Comput. Sci. 17, 18 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discret. Comput. Geom. 1, 321–341 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Telha, C., Soto, J.: Jump number of two-directional orthogonal ray graphs. In: IPCO, vol. 6655, LNCS, pp. 389–403. Springer (2011)Google Scholar
  32. 32.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1992)Google Scholar
  33. 33.
    Trotter, W.T. Jr., Moore, J.I. Jr., Sumner, D.P.: The dimension of a comparability graph. Proc. Amer. Math. Soc. 60(1976), 35–38 (1977)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Proceedings of the annual symposium on computational geometry, pp. 147–152. ACM (1985)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Steven Chaplick
    • 1
  • Stefan Felsner
    • 1
  • Udo Hoffmann
    • 1
    Email author
  • Veit Wiechert
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations