Advertisement

Order

, Volume 30, Issue 2, pp 557–572 | Cite as

Parametrized Arity Gap

  • Miguel Couceiro
  • Erkko LehtonenEmail author
  • Tamás Waldhauser
Article

Abstract

We propose a parametrized version of arity gap. The parametrized arity gap gap (f, ℓ) of a function \(f \colon A^n \to B\) measures the minimum decrease in the number of essential variables of f when ℓ consecutive identifications of pairs of essential variables are performed. We determine gap (f, ℓ) for an arbitrary function f and a nonnegative integer ℓ. We also propose other variants of arity gap and discuss further problems pertaining to the effect of identification of variables on the number of essential variables of functions.

Keywords

Arity gap Parametrized arity gap Essential variable Simple minor Variable identification minor 

Mathematics Subject Classifications (2010)

06A06 08A40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, J., Kisielewicz, A.: On the number of operations in a clone. Proc. Amer. Math. Soc. 122, 359–369 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bouaziz, M., Couceiro, M., Pouzet, M.: Join-irreducible Boolean functions. Order 27, 261–282 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Couceiro, M.: On the lattice of equational classes of Boolean functions and its closed intervals. J. Mult.-Valued Logic Soft Comput. 18, 81–104 (2008)MathSciNetGoogle Scholar
  4. 4.
    Couceiro, M., Lehtonen, E.: On the effect of variable identification on the essential arity of functions on finite sets. Int. J. Found. Comput. Sci. 18, 975–986 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Couceiro, M., Lehtonen, E.: Generalizations of Świerczkowski’s lemma and the arity gap of finite functions. Discrete Math. 309, 5905–5912 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Couceiro, M., Lehtonen, E., Waldhauser, T.: The arity gap of order-preserving functions and extensions of pseudo-Boolean functions. Discrete Appl. Math. 160, 383–390 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Couceiro, M., Lehtonen, E., Waldhauser, T.: Decompositions of functions based on arity gap. Discrete Math. 312, 238–247 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Couceiro, M., Lehtonen, E., Waldhauser, T.: On the arity gap of polynomial functions. arXiv:1104.0595 (2011)
  9. 9.
    Couceiro, M., Pouzet, M.: On a quasi-ordering on Boolean functions. Theor. Comput. Sci. 396, 71–87 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lehtonen, E.: Descending chains and antichains of the unary, linear, and monotone subfunction relations. Order 23, 129–142 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lehtonen, E., Szendrei, Á.: Equivalence of operations with respect to discriminator clones. Discrete Math. 309, 673–685 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Pippenger, N.: Galois theory for minors of finite functions. Discrete Math. 254, 405–419 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Salomaa, A.: On essential variables of functions, especially in the algebra of logic. Ann. Acad. Sci. Fenn. Ser. A I. Math. 339, 3–11 (1963)MathSciNetGoogle Scholar
  14. 14.
    Shtrakov, S., Koppitz, J.: On finite functions with non-trivial arity gap. Discuss. Math. Gen. Algebra Appl. 30, 217–245 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wang, C.: Boolean minors. Discrete Math. 141, 237–258 (1991)CrossRefGoogle Scholar
  16. 16.
    Willard, R.: Essential arities of term operations in finite algebras. Discrete Math. 149, 239–259 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Zverovich, I.E.: Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes. Discrete Appl. Math. 149, 200–218 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Miguel Couceiro
    • 1
  • Erkko Lehtonen
    • 2
    Email author
  • Tamás Waldhauser
    • 1
    • 3
  1. 1.Mathematics Research UnitUniversity of LuxembourgLuxembourgLuxembourg
  2. 2.Computer Science and Communications Research UnitUniversity of LuxembourgLuxembourgLuxembourg
  3. 3.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations