, Volume 30, Issue 2, pp 437–454 | Cite as

Optimal Factorization of Three-Way Binary Data Using Triadic Concepts

  • Radim Belohlavek
  • Cynthia GlodeanuEmail author
  • Vilem Vychodil


We present a new approach to factor analysis of three-way binary data, i.e. data described by a 3-dimensional binary matrix I, describing a relationship between objects, attributes, and conditions. The problem consists in finding a decomposition of I into three binary matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with the number of factors as small as possible. The scenario is similar to that of decomposition-based methods of analysis of three-way data but the difference consists in the composition operator and the constraint on A, B, and C to be binary. We show that triadic concepts of I, developed within formal concept analysis, provide us with optimal decompositions. We present an example demonstrating the usefulness of the decompositions. Since finding optimal decompositions is NP-hard, we propose a greedy algorithm for computing suboptimal decompositions and evaluate its performance.


Three-way binary data Factorization Triadic concept analysis 3rd order tensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. J. Wiley (2009)Google Scholar
  3. 3.
    Cormen, T.H., Leiserson C.E., Rivest, R.L., Stein C.: Introduction to Algorithms, 2nd ed. MIT Press (2001)Google Scholar
  4. 4.
    Frolov, A.A., Húsek, D., Muraviev, I.P., Polyakov, P.A.: Boolean factor analysis by Hopfield-like autoassociative memory. IEEE Trans. Neural Netw. 18(3), 698–707 (2007)CrossRefGoogle Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS – an algorithm for mining iceberg tri-lattices. In: Proc. ICDM 2006, pp. 907–911 (2006)Google Scholar
  7. 7.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Krolak-Schwerdt, S., Orlik P., Ganter, B.: TRIPAT: a model for analyzing three-mode binary data. Stud. Classif. Data Anal. Knowl. Organ. 4, 298–307 (1994)CrossRefGoogle Scholar
  9. 9.
    Kroonenberg, P.M.: Applied Multiway Data Analysis. J. Wiley (2008)Google Scholar
  10. 10.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. Lect. Notes Comput. Sci. 954, 32–43 (1995)CrossRefGoogle Scholar
  12. 12.
    Mickey, M.R., Mundle, P., Engelman, L.: Boolean factor analysis. In: Dixon, W.J. (ed.) BMDP Statistical Software Manual, vol. 2, pp. 849–860. University of California Press, Berkeley, CA (1990)Google Scholar
  13. 13.
    Miettinen, P.: Boolean tensor factorization. In: ICDM 2011, 11th IEEE International Conference on Data Mining, pp. 447–456 (2011)Google Scholar
  14. 14.
    Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem. PKDD 2006, Lect. Notes Comput. Sci. 4213, 335–346 (2006)Google Scholar
  15. 15.
    Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis of human leukocyte antigen serology. Math. Biosci. 40, 243–270 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Outrata, J.: Boolean factor analysis for data preprocessing in machine learning. In: Draghici, S., Khoshgoftaar, T.M., Palade, V., Pedrycz, W., Wani, M.A., Zhu, X. (eds.) Proc. ICMLA 2010, Intern. Conf. on Machine Learning and Applications, pp. 899-902. IEEE, Washington, DC. doi: 10.1109/ICMLA.2010.141
  17. 17.
    Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley (2004)Google Scholar
  18. 18.
    Tang, F., Tao H.: Binary principal component analysis. In: Proc. British Machine Vision Conference 2006, pp. 377–386 (2006)Google Scholar
  19. 19.
    Tatti, N., Mielikäinen T., Gionis A., Mannila H.: What is the dimension of your binary data? In: Proc. ICDM 2006, pp. 603–612 (2006)Google Scholar
  20. 20.
    Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Radim Belohlavek
    • 1
  • Cynthia Glodeanu
    • 2
    Email author
  • Vilem Vychodil
    • 1
  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Institute of AlgebraTechnische Universität DresdenDresdenGermany

Personalised recommendations