Order

, Volume 30, Issue 2, pp 415–426 | Cite as

Automorphism Groups of Countably Categorical Linear Orders are Extremely Amenable

  • François Gilbert Dorais
  • Steven Gubkin
  • Daniel McDonald
  • Manuel Rivera
Article

Abstract

We show that the automorphism groups of countably categorical linear orders are extremely amenable. Using methods of Kechris, Pestov, and Todorcevic, we use this fact to derive a structural Ramsey theorem for certain families of finite ordered structures with finitely many partial equivalence relations with convex classes.

Keywords

Linear orders Automorphism groups Countable categoricity Extreme amenability Fraïssé classes Ramsey property 

Mathematics Subject Classifications (2010)

Primary 06A05 20B27; Secondary 03C35 05C55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fraïssé, R.: Sur l’extension aux relations de quelques propriétés des ordres. Ann. Sci. Ecole Norm. Sup. 71(3), 363–388 (1954)MathSciNetMATHGoogle Scholar
  2. 2.
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  3. 3.
    Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15(1), 106–189 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Nguyen Van Thé, L.: Ramsey degrees of finite ultrametric spaces, ultrametric Urysohn spaces and dynamics of their isometry groups. Eur. J. Comb. 30(4), 934–945 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Pestov, V.G.: On free actions, minimal flows, and a problem by Ellis. Trans. Am. Math. Soc. 350(10), 4149–4165 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Rado, R.: Direct decomposition of partitions. J. Lond. Math. Soc. 29, 71–83 (1954)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rosenstein, J.G.: \(\aleph \sb{0}\)-categoricity of linear orderings. Fund. Math. 64, 1–5 (1969)MathSciNetMATHGoogle Scholar
  9. 9.
    Rosenstein, J.G.: Linear orderings. In: Pure and Applied Mathematics, vol. 98. Academic Press, New York (1982)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • François Gilbert Dorais
    • 1
  • Steven Gubkin
    • 2
  • Daniel McDonald
    • 3
  • Manuel Rivera
    • 4
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA
  3. 3.Department of MathematicsUniversity of IllinoisUrbanaUSA
  4. 4.MathematicsCUNY Graduate CenterNew YorkUSA

Personalised recommendations