, Volume 29, Issue 3, pp 419–441 | Cite as

Helly Spaces and Radon Measures on Complete Lines

  • Marianne Morillon


We work in the set theory without the Axiom of Choice ZF. Given a linearly ordered set X, the (closed) subset H(X,[0,1]) of the product topological space [0,1] X consisting of the isotonic mappings u:X →[0,1] is (Loeb-)compact. The compactness of \(H(\mathbb R,L)\) where L is the lexicographic order [0,1] ×{0,1} is not provable (in ZF). Radon measures on a complete linearly ordered set X are studied: they are of Radon–Stieltjes type; moreover, the “dual ball” of the Banach space C(X) is (Loeb-)compact in the weak* topology, and the Banach space C(X) satisfies the (effective) continuous Hahn–Banach property.


Axiom of Choice Product topology Compactness Helly space Stieltjes–Radon measures Hahn–Banach property 

Mathematics Subject Classifications (2010)

Primary 03E25; Secondary 06A05 06F30 54B10 


  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). Reprint of the 1985 originalzbMATHGoogle Scholar
  2. 2.
    Bourbaki, N.: Éléments de Mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les Espaces Topologiques Séparés. Actualités Scientifiques et Industrielles, no. 1343. Hermann, Paris (1969)Google Scholar
  3. 3.
    Bourbaki, N.: Éléments de Mathématique. Théorie des Ensembles. Hermann, Paris (1970)zbMATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Topologie Générale, Chapitres 5 à 10. C.C.L.S., Paris (1974)zbMATHGoogle Scholar
  5. 5.
    Dodu, J., Morillon, M.: The Hahn–Banach property and the Axiom of Choice. Math. Log. Q. 45(3), 299–314 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Engelking, R.: General topology. In: Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann, Berlin (1989). Translated from the Polish by the authorGoogle Scholar
  7. 7.
    Fossy, J., Morillon, M.: The Baire category property and some notions of compactness. J. Lond. Math. Soc., II. Ser. 57(1), 1–19 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frink Jr., O.: Topology in lattices. Trans. Am. Math. Soc. 51, 569–582 (1942)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Haddad, L., Morillon, M.: L’axiome de normalité pour les espaces totalement ordonnés. J. Symb. Log. 55(1), 277–283 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Halpern, J.D., Lévy, A.: The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory (Proc. Sympos. Pure Math., vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 83–134. American Mathematics Society, Providence (1971)Google Scholar
  11. 11.
    Howard, P., Rubin, J.E.: Consequences of the Axiom of Choice, vol. 59. American Mathematical Society, Providence (1998)Google Scholar
  12. 12.
    Jech, T.: Set Theory. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978). Pure and Applied MathematicsGoogle Scholar
  13. 13.
    Jech, T.J.: The Axiom of Choice. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  14. 14.
    Kelley, J.L.: The Tychonoff product theorem implies the Axiom of Choice. Fundam. Math. 37, 75–76 (1950)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Keremedis, K.: Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem. Bull. Pol. Acad. Sci., Math. 53(4), 349–359 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Keremedis, K., Tachtsis, E.: On Loeb and weakly Loeb Hausdorff spaces. Sci. Math. Jpn. 53(2), 247–251 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Läuchli, H.: Auswahlaxiom in der Algebra. Comment. Math. Helv. 37, 1–18 (1962/1963)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Loeb, P.A.: A new proof of the Tychonoff theorem. Am. Math. Mon. 72, 711–717 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Morillon, M.: Ensembles totalement ordonnés et axiomes de choix. In: Séminaire d’Analyse, 1987–1988 (Clermont-Ferrand, 1987–1988), pp. exp. no. 5, 15. Univ. Clermont-Ferrand II, Clermont (1990)Google Scholar
  20. 20.
    Morillon, M.: Notions of compactness for special subsets of ℝI and some weak forms of the Axiom of Choice. J. Symb. Log. 75(1), 255–268 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Morillon, M.: Uniform Gâteaux differentiability yields Hahn–Banach. Quaest. Math. 33, 131–146 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Steen, L.A., Seebach Jr., J.A.: Counterexamples in Topology, 2nd edn. Springer, New York (1978)zbMATHCrossRefGoogle Scholar
  23. 23.
    van Douwen, E.K.: Horrors of topology without AC: a nonnormal orderable space. Proc. Am. Math. Soc. 95(1), 101–105 (1985)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.ERMIT, Département de Mathématiques et InformatiqueUniversité de La Réunion, Parc Technologique UniversitaireSainte-ClotildeFrance

Personalised recommendations