, Volume 28, Issue 1, pp 53–87 | Cite as

Biorders with Frontier



This paper studies an extension of biorders that has a “frontier” between the relation and the absence of relation. This extension is motivated by a conjoint measurement problem consisting in the additive representation of ordered coverings defined on product sets of two components. We also investigate interval orders and semiorders with frontier.


Biorder Interval order Semiorder Frontier 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrísqueta, F.J., Candeal, J.C., Induráin, E., Zudaire, M.: Scott-Suppes representability of semiorders: internal conditions. Math. Soc. Sci. 57(2), 245–261 (2009)MATHCrossRefGoogle Scholar
  2. 2.
    Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)MATHGoogle Scholar
  3. 3.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)MATHCrossRefGoogle Scholar
  4. 4.
    Allen, J.F.: Time and time again: the many ways to represent time. Int. J. Intell. Syst. 6, 341–355 (1991)CrossRefGoogle Scholar
  5. 5.
    Allen, J.F., Hayes, P.: Moments and points in an interval-based temporal logic. Comput. Intell. 5, 225–238 (1989)CrossRefGoogle Scholar
  6. 6.
    Beja, A., Gilboa, I.: Numerical representations of imperfectly ordered preferences (a unified geometric exposition). J. Math. Psychol. 36, 426–449 (1992)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bosi, B., Candeal, J.C., Induráin, E., Oloriz, E., Zudaire, M.: Numerical representations of interval orders. Order 18, 171–190 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bouyssou, D., Marchant, Th.: An axiomatic approach to noncompensatory sorting methods in MCDM, I: the case of two categories. Eur. J. Oper. Res. 178(1), 217–245 (2007)MATHCrossRefGoogle Scholar
  9. 9.
    Bouyssou, D., Marchant, Th.: An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories. Eur. J. Oper. Res. 178(1), 246–276 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Bouyssou, D., Marchant, Th.: Ordered categories and additive conjoint measurement on connected sets. J. Math. Psychol. 53(2), 92–105 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bouyssou, D., Marchant, Th.: Additive conjoint measurement with ordered categories. Eur. J. Oper. Res. 203(1), 195–204 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Bridges, D.S.: Numerical representation of intransitive preferences on a countable set. J. Econ. Theory 30, 213–217 (1983a)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bridges, D.S.: A numerical representation of preferences with intransitive indifference. J. Math. Econ. 11, 25–42 (1983b)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bridges, D.S.: Representing interval orders by a single real-valued function. J. Econ. Theory 36, 149–155 (1985)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Candeal, J.C., Induráin, E., Zudaire, M.: Numerical representability of semiorders. Math. Soc. Sci. 43, 61–77 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Doignon, J.-P., Ducamp, A., Falmagne, J.-C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28, 73–109 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Doignon, J.-P., Ducamp, A., Falmagne, J.-C.: On the separation of two relations by a biorder or a semiorder. Math. Soc. Sci. 13, 1–18 (1987)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Doignon, J.-P., Falmagne, J.-C.: Matching relations and the dimensional structure of social choices. Math. Soc. Sci. 7, 211–229 (1984)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, Ph.: Biorder families, valued relations and preference modelling. J. Math. Psychol. 30, 435–480 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ducamp, A., Falmagne, J.-C.: Composite measurement. J. Math. Psychol. 6, 359–390 (1969)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Fishburn, P.C.: Interval representations for interval orders and semiorders. J. Math. Psychol. 10, 91–105 (1973)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Fishburn, P.C.: Interval Orders and Intervals Graphs. Wiley, New York (1985)Google Scholar
  24. 24.
    Fishburn, P.C., Monjardet, B.: Norbert Wiener on the theory of measurement (1914, 1915, 1921). J. Math. Psychol. 36, 165–184 (1992)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gensemer, S.H.: Continuous semiorder representations. J. Math. Econ. 16, 275–289 (1987)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gensemer, S.H.: On relationships between numerical representations of interval orders and semiorders. J. Econ. Theory 43, 157–169 (1987)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Goldstein, W.M.: Decomposable threshold models. J. Math. Psychol. 35, 64–79 (1991)MATHCrossRefGoogle Scholar
  28. 28.
    Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40, 1108–1133 (1993)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of measurement. In: Additive and Polynomial Representations, vol. 1. Academic, New York (1971)Google Scholar
  30. 30.
    Levine, M.V.: Transformations that render curves parallel. J. Math. Psychol. 7, 410–443 (1970)MATHCrossRefGoogle Scholar
  31. 31.
    Luce, R.D.: Semi-orders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lück, U.: Representing interval orders by arbitrary real intervals. Tech. rep., Department of Philosophy, University of Munich (2004)Google Scholar
  33. 33.
    Lück, U.: Continu’ous time goes by Russell. Notre Dame J. Form. Log. 47, 397–434 (2006)MATHCrossRefGoogle Scholar
  34. 34.
    Manders, K.L.: On JND representations of semiorders. J. Math. Psychol. 24, 224–248 (1981)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Monjardet, B.: Axiomatiques et propriétés des quasi-ordres. Math. Sci. Hum. 63, 51–82 (1978)MathSciNetMATHGoogle Scholar
  36. 36.
    Nakamura, Y.: Real interval representations. J. Math. Psychol. 46, 140–177 (2002)MATHCrossRefGoogle Scholar
  37. 37.
    Narens, L.: The measurement theory of dense threshold structures. J. Math. Psychol. 38, 301–321 (1994)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Oloriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78, 219–227 (1998)MATHCrossRefGoogle Scholar
  39. 39.
    Pirlot, M., Vincke, Ph.: Semiorders. Properties, Representations, Applications. Kluwer, Dordrecht (1997)MATHGoogle Scholar
  40. 40.
    Roy, B.: Algèbre moderne et théorie des graphes orientées vers les sciences économiques et sociales. In: Applications et Problèmes Spécifiques, vol. 2. Dunod, Paris (1970)Google Scholar
  41. 41.
    Roy, B., Vincke, Ph.: Pseudo-orders: definition, properties and numerical representation. Math. Soc. Sci. 14, 263–274 (1987)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar
  43. 43.
    Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Słowiński, R., Greco, S., Matarazzo, B.: Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle. Control Cybern. 31(4), 1005–1035 (2002)MATHGoogle Scholar
  45. 45.
    Suppes, P., Krantz, D.H., Luce, R.D., Tversky, A.: Foundations of measurement. In: Geometrical, Threshold, and Probabilistic Representations, vol. 2. Academic Press, New York (1989)Google Scholar
  46. 46.
    Vincke, Ph.: Vrai, quasi, pseudo et précritères dans un ensemble fini: propriétés et algorithmes. Cahier du LAMSADE 27, Université Paris-Dauphine, Paris (1980)Google Scholar
  47. 47.
    Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CNRSParis Cedex 16France
  2. 2.Université Paris DauphineParis Cedex 16France
  3. 3.Department of Data AnalysisUniversiteit GentGentBelgium

Personalised recommendations