, Volume 27, Issue 2, pp 147–161 | Cite as

Residuated Lattices of Size ≤ 12



We present the numbers of all non-isomorphic residuated lattices with up to 12 elements and a link to a database of these lattices. In addition, we explore various characteristics of these lattices such as the width, length, and various properties considered in the literature and provide the corresponding statistics. We also present algorithms for computing finite residuated lattices including a fast heuristic test of non-isomorphism.


Finite residuated lattices Finite lattices Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aït-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice operations. ACM Trans. Program. Lang. Syst. 11(1), 115–146 (1989)CrossRefGoogle Scholar
  2. 2.
    Bartušek, T., Navara, M.: Program for generating fuzzy logical operations and its use in mathematical proofs. Kybernetika 38(3), 235–244 (2002)MathSciNetGoogle Scholar
  3. 3.
    Birkhoff, G.: Lattice Theory. Publ. AMS, Providence, RI (1967)MATHGoogle Scholar
  4. 4.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York (2002)MATHGoogle Scholar
  5. 5.
    Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebra Comput. 13, 437–461 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chajda, I., Glazek, K.: A Basic Course on General Algebra. Technical University Press, Zielona Góra (2000)MATHGoogle Scholar
  7. 7.
    De Baets, B.: The number of linearly ordered abelian integral monoids of size n; the number of t-norms on an n-chain. The On-Line Encyclopedia of Integer Sequences (database entry A030453) (1999)Google Scholar
  8. 8.
    De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61–75 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Dilworth, R.P.: Abstract residuation over lattices. Bull. Am. Math. Soc. 44, 262–268 (1938)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Erne, M., Stege, K.: Counting finite posets and topologies. Order 8, 247–265 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271–288 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Freese, R.S., Ježek, J., Nation, J.B.: Free Lattices. Math. Surveys and Monographs, vol. 42. AMS (1995)Google Scholar
  13. 13.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier (2007)Google Scholar
  14. 14.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968–9)Google Scholar
  16. 16.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Beldock, England (2001)MATHGoogle Scholar
  17. 17.
    Grätzer, G.A.: General Lattice Theory, 2nd edn. Birkhauser (1998)Google Scholar
  18. 18.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  19. 19.
    Heitzig, J., Reinhold, J.: The number of unlabeled orders on fourteen elements. Order 17(4), 333–341 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Heitzig, J., Reinhold, J.: Counting finite lattices. Algebra Univers. 48(1), 43–53 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Höhle, U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201, 786–826 (1996)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jipsen, P.: Small Residuated Lattices. http://www1.chapman.edu/~jipsen/gap/rl.html
  23. 23.
    Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  24. 24.
    Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a finite set. Trans. Am. Math. Soc. 205, 205–220 (1975)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kleitman, D.J., Winston, K.J.: The asymptotic number of lattices. Ann. Discrete Math. 6, 243–249 (1980)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer (2000)Google Scholar
  27. 27.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall (1995)Google Scholar
  28. 28.
    Kyuno, S.: An inductive algorithm to construct finite lattices. Math. Comput. 33(145), 409–421 (1979)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lygeros, N., Zimmermann, P.: Computation of P(14), the Number of Posets with 14 Elements: 1.338.193.159.771. http://www.lygeros.org/Math/poset.html
  30. 30.
    Miller, G.T.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  31. 31.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Log. Grundl. Math. 25, 45–52, 119–134, 447–464 (1979)Google Scholar
  32. 32.
    The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/
  33. 33.
    Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic
  2. 2.SUNY BinghamtonBinghamtonUSA

Personalised recommendations