, Volume 26, Issue 3, pp 229–236 | Cite as

On the Complexity of Cover-Incomparability Graphs of Posets

  • Jana Maxová
  • Pavla Pavlíková
  • Daniel Turzík


In this paper we show that the recognition problem for C-I graphs of posets is NP-complete. On the other hand, we prove that induced subgraphs of C-I graphs are exactly complements of comparability graphs, and hence the recognition problem for induced subgraphs of C-I graphs of posets is polynomial.


Poset Graph Transitive orientation NP-complete 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandstädt, A., Le, V.B., Spinard, J.: Graph Classes. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  2. 2.
    Brešar, B., Changat, M., Klavžar, S., Kovše, M., Mathews, J., Mathews, A.: Cover-incomparability graphs of posets. Order 25, 335–347 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brigtwell, G.: On the complexity of diagram testing. Order 10, 297–303 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hung. 18, 25–66 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, New York (1979)Google Scholar
  6. 6.
    Golumbic, M.: Algorithmic graph theory and perfect graphs, academic press, 2nd edn. Ann. Discrete Math. 57 (2004)Google Scholar
  7. 7.
    Lovász, L.: Combinatorial Problems and Exercises. Akadémiai Kaidó, Budapest (1979)zbMATHGoogle Scholar
  8. 8.
    Nešetřil, J., Rödl,V.: Complexity of diagrams. Order 3, 321–330 (1987)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Nešetřil, J., Rödl, V.: More on the complexity of cover graphs. Comment. Math. Univ. Carol. 36, 269–278 (1995)zbMATHGoogle Scholar
  10. 10.
    Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indag. Math. 39, 406–424 (1977)MathSciNetGoogle Scholar
  11. 11.
    Rival, I.: The role of graphs in the theory of ordered sets and its applications. J. Symb. Log. 57, 269–271 (1992)CrossRefGoogle Scholar
  12. 12.
    Trotter, W.T.: Graphs and partially ordered sets: recent results and new directions. Congr. Numer. 116, 253–278 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jana Maxová
    • 1
    • 2
  • Pavla Pavlíková
    • 1
  • Daniel Turzík
    • 1
  1. 1.Department of MathematicsInstitute of Chemical TechnologyPragueCzech Republic
  2. 2.Institute for Theoretical Computer Science (ITI)Charles UniversityPraha 1Czech Republic

Personalised recommendations