, Volume 26, Issue 1, pp 69–94 | Cite as

Choice Functions and Extensive Operators

  • V. DanilovEmail author
  • G. Koshevoy


The paper puts forth a theory of choice functions in a neat way connecting it to a theory of extensive operators and neighborhood systems. We consider classes of heritage choice functions satisfying conditions M, N, W, and C, or combinations of these conditions. In terms of extensive operators these classes can be considered as generalizations of symmetric, anti-symmetric and transitive binary relations. Among these classes we meet the well-known classes of matroids and convex geometries. Using a ‘topological’ language we discuss these classes of monotone extensive operators (or heritage choice functions) in terms of neighborhood systems. A remarkable inversion on the set of choice functions is introduced. Restricted to the class of heritage choice functions the inversion turns out to be an involution, and under this involution the axiom N is auto-inverse, whereas the axioms W and M change places.


Neighborhood system Pre-topology Matroid Anti-matroid Exchange and anti-exchange conditions Closure operator Direct image 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M.: Combinatorial Theory. Springer, Berlin (1979)zbMATHGoogle Scholar
  2. 2.
    Aizerman, M.A., Aleskerov, F.T.: Theory of Choice. North Holland, Amsterdam (1995)zbMATHGoogle Scholar
  3. 3.
    Aizerman, M.A., Zavalishin, N.V., Pyatnitsky, Ye.S.: Global functions of sets in the theory of alternative selection. Avtom. Telemeh. 38(3), 11–125 (1977)Google Scholar
  4. 4.
    Ando, K.: Extreme point axioms for closure spaces. Discrete Math. 303, 3181–3188 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Caspard, N., Monjardet, B.: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey. Discrete Appl. Math. 127(2), 241–269 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Danilov, V., Koshevoy, G.: Mathematics of Plott choice functions. Math. Soc. Sci. 49, 245–272 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Demetrovics, J., Hencsey, G., Libkin, L., Muchnik, I.: On the interaction between closure operations and choice functions with applications to relational databases. Acta Cybern. 10(Nr.3), 129–139 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Echenique, F.: Counting combinatorial choice rules. Games Econ. Behav. 58, 231–245 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edelman, P.H.: Abstract convexity and meet-distribunive lattices. Contemp. Math. 57, 127–149 (1986)MathSciNetGoogle Scholar
  10. 10.
    Johnson, M.R., Dean, R.A.: Locally complete path independent choice functions and their lattices. Math. Soc. Sci. 42, 53–87 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koshevoy, G.A.: Choice functions and abstract convex geometries. Math. Soc. Sci. 38, 35–44 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Litvakov, B.M.: Choice mechanisms using graph-multiple structures. Avtom. Telemeh. 9, 145–152 (1980)MathSciNetGoogle Scholar
  13. 13.
    Mirkin, B., Muchnik, I.: Induced layered clusters, hereditary mappings, and convex geometries. Appl. Math. Lett. 15, 293–298 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Monjardet, B., Raderanirina, V.: Lattices of choice functions and consensus problems. Soc. Choice Welf. 23, 349–382 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Moulin, H.: Choice functions over a finite sets: a summery. Soc. Choice Welf. 2, 147-160 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Muchnik, I., Shwartser, L.: Maximization of generalized characteristic of functions of monotone systems. Avtom. Telemeh. 51, 1562–1572 (1990)zbMATHGoogle Scholar
  17. 17.
    Nehring, K.: Rational choice and revealed preference without binariness. Soc. Choice Welf. 14, 403–425 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Central Institute of Economics and Mathematics of the RASMoscowRussia

Personalised recommendations