, Volume 25, Issue 4, pp 387–401 | Cite as

Abelian -Groups with Strong Unit and Perfect MV-Algebras

  • Lawrence P. Belluce
  • Antonio Di Nola
  • Brunella Gerla


We investigate the class of abelian -groups with strong unit corresponding to perfect MV-algebras via the Γ functor, showing that this is a universal subclass of the class of all abelian -groups with strong unit and describing the formulas that axiomatize it. We further describe results for classes of abelian -groups with strong unit corresponding to local MV-algebras with finite rank.


Lattice-ordered groups MV-algebras Perfect MV-algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belluce, L.P., Di Nola, A., Gerla, B.: Perfect MV-algebras and their logic. Appl. Categ. Struct. 15, 135–151 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Belluce L.P.: Semisimple algebras of infinite-valued logic. Can. J. Math. 38, 1356–1379 (1986)MATHMathSciNetGoogle Scholar
  3. 3.
    Belluce, L.P.: The going up and going down theorems in MV-algebras and Abelian -groups. J. Math. Anal. Appl. 241, 92–106 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued predicate logic. J. Symb. Log. 28, 43–50 (1963)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Belluce, L.P., Di Nola, A.: The MV-algebra of first order Łukasiewicz logic. General algebra and ordered sets. Tatra Mt. Math. Publ. 27, 7–22 (2003)MATHMathSciNetGoogle Scholar
  6. 6.
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)MATHCrossRefGoogle Scholar
  7. 7.
    Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic foundations of many-valued reasoning. In: Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)Google Scholar
  8. 8.
    Darnel, M.L.: Theory of Lattice-ordered Groups. Dekker, New York (1994)Google Scholar
  9. 9.
    Di Nola, A., Esposito, I., Gerla, B.: Local MV-algebras in the representation of MV-algebras. Algebra Univers. 56 133–164 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Di Nola, A.: Representation and reticulation by quotients of MV-algebras. Ric. Mat. XL, 291–297 (1991)MathSciNetGoogle Scholar
  11. 11.
    Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to Abelian -groups. Stud. Log. 53, 417–432 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Di Nola, A., Lettieri, A.: Equational characterization of all varieties of MV-algebras. J. Algebra 221, 463–474 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Flaminio, T.: Strong non-standard completeness for fuzzy logics. Soft Comput. 12, 321–333 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Hager, A.W., Kimber, C.M.: Uniformly hyperarchimedean lattice-ordered groups. Order 24, 121–131 (2007)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Komori, Y.: Super Łukasiewicz propositional logics. Nagoya Math. J. 84 119–133 (1981)MATHMathSciNetGoogle Scholar
  16. 16.
    Mundici, D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct Anal. 65, 15–63 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Scarpellini, B.: Die Nichaxiomatisierbarkeit des unendlichwertigen pradikatenkalkulus von Lukasiewicz. J. Symb. Log. 27, 159–170 (1962)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Torrens, A.: Cyclic elements in MV-algebras and post algebras. Math. Log. Q. 40, 431–444 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lawrence P. Belluce
    • 1
  • Antonio Di Nola
    • 2
  • Brunella Gerla
    • 3
  1. 1.Department of MathematicsBritish Columbia UniversityVancouverCanada
  2. 2.Department of Mathematics and InformaticsUniversity of SalernoBaronissiItaly
  3. 3.Department of Informatics and CommunicationsUniversity of InsubriaVareseItaly

Personalised recommendations