, Volume 25, Issue 4, pp 377–386 | Cite as

Directly Indecomposables in Semidegenerate Varieties of Connected po-Groupoids

  • Pedro Sánchez Terraf


We study varieties with a term-definable poset structure, po-groupoids. It is known that connected posets have the strict refinement property (SRP). In Sánchez Terraf and Vaggione (Trans Am Math Soc, in press) it is proved that semidegenerate varieties with the SRP have definable factor congruences and if the similarity type is finite, directly indecomposables are axiomatizable by a set of first-order sentences. We obtain such a set for semidegenerate varieties of connected po-groupoids and show its quantifier complexity is bounded in general.


Connected poset Strict refinement property Semidegenerate variety Definable factor congruences 

Mathematics Subject Classifications (2000)

06A12 20M10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerhard, J.A.: The lattice of equational classes of idempotent semigroups. J. Algebra 15, 195–224 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gerhard, J.A.: Subdirectly irreducible idempotent semigroups. Pac. J. Math. 39, 669–676 (1971)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Kollar, J.: Congruences and one element subalgebras. Algebra Univers. 9, 266–267 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    McCune, W.: Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (August, 2003)Google Scholar
  5. 5.
    McCune, W.: Prover9 and Mace4 Webpage.∼mccune/prover9/
  6. 6.
    McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties, vol 1. The Wadsworth & Brooks/Cole Math. Series. Wadsworth & Brooks/Cole, Monterey (1987)Google Scholar
  7. 7.
    Sánchez Terraf, P., Vaggione, D.: Varieties with definable factor congruences. Trans. Am. Math. Soc. (in press)Google Scholar
  8. 8.
    Vaggione, D.: \(\mathcal{V}\) with factorable congruences and \(\mathcal{V}= \mathbf{I\Gamma}^a(\mathcal{V}_{DI})\) imply \(\mathcal{V}\) is a discriminator variety. Acta Sci. Math. 62, 359–368 (1996)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Vaggione, D.: Varieties of shells. Algebra Univers. 36, 483–487 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Willard, R.: A note on indecomposable lattices. Algebra Univers. 26, 257–258 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Willard, R.: Varieties having boolean factor congruences. J. Algebra 132, 130–153 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.CIEM—Facultad de Matemática, Astronomía y Física (Fa.M.A.F.)Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations