Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tunable thermo-piezo-plasmonic effect on core/shell nanoparticles under laser irradiation and external electric field

  • 33 Accesses

Abstract

This work is focused on the characterization of the opto-heating generation in thermo-piezo-plasmonic solutions of gold-PbZrTiO3 (PZT) core/shell nanoparticles. Core/shell nanoparticles have been prepared by the laser ablation in liquid method. Linear and nonlinear optical properties of proposed nanoparticles were studied by optical spectroscopy and the Z-scan technique under external voltage to investigate the piezo-photonic effect. Furthermore, the linear optical properties of these nanostructures were calculated vie dipole approximation method with different core size and different shell thickness of samples immersed in water and poly-vinyl-pyrrolidone. In addition, thermo-plasmonic effects of samples are investigated theoretically and experimentally by the finite element method of COMSOL multiphysics V5.4 and infrared camera under laser irradiation and external electric field. The results revealed a clear tunable and adjustable linear and nonlinear behavior and thermo-piezo-plasmonic properties under external effects. The temperature elevation is ranging of ∆T = 3.7–14.1 °C under different external effects. Accordingly, these results encourage to uses proposed samples for the cancer treatment and the different biomedical applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Acosta, M., Schmitt, L.A., Molina-Luna, L., Scherrer, M.C., Brilz, M., Webber, K.G., Deluca, M., Kleebe, H.-J., Rödel, J., Donner, W.: Core–shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3–SrTiO3 System. J. Am. Ceram. Soc. 98(11), 3405–3422 (2015). https://doi.org/10.1111/jace.13853

  2. Almond, D.P., Bowen, C.R.: An explanation of the photoinduced giant dielectric constant of lead halide perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1736–1740 (2015). https://doi.org/10.1021/acs.jpclett.5b00620

  3. Baffou, G., Quidant, R., Girard, C.: Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94(15), 153109–153111 (2009). http://sci-hub.tw/10.1063/1.3116645

  4. Baibarac, M., Sima, M., Matei, E., Pasuk, I., Mihut, L.: Synthesis and Raman scattering of multiferroic Fe2Pb(Zr0.2Ti0.8)O3 core–shell wire arrays. Phys. Status Solidi (a) 211(1), 200–205 (2013). https://doi.org/10.1002/pssa.201330062

  5. Banerjee, A., Bose, S.: Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification. Chem. Mater. 16(26), 5610–5615 (2004). https://doi.org/10.1021/cm0490423

  6. Bäuerle, D.: Thermal, photophysical, and photochemical processes. Laser Process. Chem. (2011). https://doi.org/10.1007/978-3-642-17613-5_2

  7. Bochenek, D., Niemiec, P., Skulski, R., Adamczyk-Habrajska, M.: Electrophysical properties of a multicomponent PZT-type ceramics for actuator applications. J. Phys. Chem. Solids 133, 128–134 (2019). https://doi.org/10.1016/j.jpcs.2019.05.015

  8. Bortolani, F., Dorey, R.A.: Synthesis of spherical lead zirconate titanate (PZT) nanoparticles by electrohydrodynamic atomisation. Adv. Appl. Ceram. 108(6), 332–337 (2009). https://doi.org/10.1179/174367608x378578

  9. Bretos, I., Jiménez, R., Tomczyk, M., Rodríguez-Castellón, E., Vilarinho, P.M., Calzada, M.L.: Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelectronic devices. Sci. Rep. (2016). https://doi.org/10.1038/srep20143

  10. Ciofani, G., Menciassi, A.: Piezoelectric nanomaterials for biomedical applications. Nanomed. Nanotoxicol. (2012). https://doi.org/10.1007/978-3-642-28044-3

  11. Cook-Chennault, K.A.: Piezoelectric and dielectric properties of PZT-epoxy composite thick films. Acad. J. Polym. Sci. (2018). https://doi.org/10.19080/ajop.2018.01.555574

  12. Dalir, N., Javadian, S., Dehghani, Z.: High optical nonlinearity of nematic liquid crystal doped with graphen oxide. J. Mol. Liq. 244, 103–109 (2017). https://doi.org/10.1016/j.molliq.2017.08.123

  13. Dehghani, Z., Saievar Iranizad, E., Nadafan, M.: Investigation of electric field effect on the third order nonlinear optical properties of Fe3O4 nanoparticles-doped nematic liquid crystal. Opt. Commun. 334, 16–21 (2015). https://doi.org/10.1016/j.optcom.2014.07.058

  14. Dehghani, Z., Dalir, N., Nadafan, M., Majles Ara, M.H., Saievar Iranizad, E.: Investigation of electrical and nonlinear optical properties of colloidal composite nematic liquid crystal. J. Mol. Liq. 225, 502–509 (2017). https://doi.org/10.1016/j.molliq.2016.11.070

  15. Fraile, I., Gabilondo, M., Burgos, N., Azcona, M., Castro, F.: Laser sintered ceramic coatings of PZT nanoparticles deposited by inkjet printing on metallic and ceramic substrates. Ceram. Int. 44(13), 15603–15610 (2018). https://doi.org/10.1016/j.ceramint.2018.05.225

  16. Ganeev, R.A.: Laser-Surface Interactions. Springer, Berlin (2014). https://doi.org/10.1007/978-94-007-7341-7

  17. Garnica-Romo, M.G., Páez-Sánchez, A., García-González, L., Domínguez-López, I., Díaz-Flores, L.L., Villicaña-Mendez, M.: Nanoparticles of lead zirconate titanate (PZT) used as ferroelectric ceramics produced by sol–gel acetic-acid route. J. Sol-Gel Sci. Technol. 74(2), 425–431 (2015). https://doi.org/10.1007/s10971-015-3617-4

  18. Gatea, M.A., Jawad, H.A., Mosleh, M., Hamidi, S.M.: Thermoplasmonic response of Au@SiO2 core–shell nanoparticles in deionized water and poly-vinylpyrrolidone matrix. SYLWAN 162(9), 1–13 (2018)

  19. Gatea, M.A., Jawad, H.A., Hamidi, S.M.: Detecting the thermoplasmonic effect using ellipsometry parameters for self-assembled gold nanoparticles within a polydimethylsiloxane matrix. Appl. Phys. A (2019a). https://doi.org/10.1007/s00339-019-2401-7

  20. Gatea, M.A., et al.: Thermoplasmonic of single Au@SiO2 and SiO2@Au core shell nanoparticles in deionized water and poly-vinylpyrrolidonematrix. Baghdad Sci. J. 16(2), 376–381 (2019b). https://doi.org/10.21123/bsj.16.2.0376

  21. Ghasemifard, M., Hosseini, S.M., Khorsand Zak, A., Khorrami, G.: Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physica E 41(3), 418–422 (2009). https://doi.org/10.1016/j.physe.2008.09.017

  22. Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2(1), 30–38 (2007). https://doi.org/10.1016/s1748-0132(07)70017-8

  23. Haddawi, S.F., Humud, H.R., Hamidi, S.M.: Signature of plasmonic nanoparticles in multi-wavelength low power random lasing. Opt. Laser Technol. 121, 105770–105784 (2020). http://sci-hub.tw/10.1016/j.optlastec.2019.105770

  24. Han, S., Li, C., Liu, Z., Lei, B., Daihua Zhang, W., Jin, X.L., Tang, T., Zhou, C.: Transition metal oxide core–shell nanowires: generic synthesis and transport studies. Nano Lett. 4(7), 1241–1246 (2004). https://doi.org/10.1021/nl049467o

  25. Hasan, D., Ho, C.P., Pitchappa, P., Yang, B., Yang, C., Lee, C.: thermoplasmonic study of a triple band optical nanoantenna strongly coupled to mid IR molecular mode. Sci. Rep. (2016). https://doi.org/10.1038/srep22227

  26. Hogan, N.J., Urban, A.S., Ayala-Orozco, C., Pimpinelli, A., Nordlander, P., Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14(8), 4640–4645 (2014). https://doi.org/10.1021/nl5016975

  27. Islam, R.A., Bedekar, V., Poudyal, N., Liu, J.P., Priya, S.: Magnetoelectric properties of core–shell particulate nanocomposites. J. Appl. Phys. 104(10), 104111–104114 (2008). http://sci-hub.tw/10.1063/1.3013437

  28. Jing, L., Weili Li, Yu., Feng, Y.Z., He, J., Fei, W.: PVDF-based composites filled with PZT@Ag core–shell structured particles for enhanced dielectric properties. Mod. Phys. Lett. B 33(11), 1950139–1950146 (2019). http://sci-hub.tw/10.1142/s0217984919501392

  29. Khlebtsov, N.G.: Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron. 38(6), 504–529 (2008). https://doi.org/10.1070/qe2008v038n06abeh013829

  30. Kodeary, A.K., Hamidi, S.M.: Tunable piezophotonic effect on core–shell nanoparticles prepared by laser ablation in liquids under external voltage. J. Nanotechnol. 2019, 1–11 (2019). https://doi.org/10.1155/2019/6046079

  31. Kodeary, A.K., Hamidi, S.M., Moradlou, R.: Voltage controlled nonlinear properties of piezo-magneto-plasmonic core/shell nanoparticles. Nano Struct. Nano Objects (2019). https://doi.org/10.1016/j.nanoso.2019.100415

  32. Koushki, E., Baedi, J., Tasbandi, A.: Sodium doping effect on optical permittivity, band gap structure, nonlinearity and piezoelectric properties of PZT nano-colloids and nanostructures. J. Electron. Mater. 48(2), 1066–1073 (2018). https://doi.org/10.1007/s11664-018-6834-0

  33. Li, X., Yao, Z., Xie, J., Li, Z., Hao, H., Cao, M., Ullah, A., Ullah, A., Manan, A., Liu, H.: Grain boundary effects on piezoelectric properties of the core–shell-structured BaTiO3@TiO2 ceramics. J. Adv. Dielectr. 08(06), 1850044–1850052 (2018). http://sci-hub.tw/10.1142/s2010135x18500443

  34. Liu, M., Li, X., Imrane, H., Chen, Y., Goodrich, T., Cai, Z., Ziemer, K.S., Huang, J.Y., Sun, N.X.: Synthesis of ordered arrays of multiferroic NiFe2O4–Pb(Zr0.52Ti0.48)O3 core–shell nanowires. Appl. Phys. Lett. 90(15), 152501–152504 (2007). http://sci-hub.tw/10.1063/1.2722043

  35. Mbarak, H., Kodeary, A.K., Hamidi, S.M., Mohajarani, E., Zaatar, Y.: Control of nonlinear refractive index of AuNPs doped with nematic liquid crystal under external electric field. Optik 198, 163299–163304 (2019). http://sci-hub.tw/10.1016/j.ijleo.2019.163299

  36. Mirzaei, A., Bonyani, M., Torkian, S.: Synthesis and characterization of nanocrystalline PZT powders: from sol to dense ceramics. Process. Appl. Ceram. 10(1), 9–16 (2016). https://doi.org/10.2298/pac1601009m

  37. Nadafan, M., Malekfar, R., Dehghani, Z.: Microstructural and nonlinear optical properties of SiO2 and Al2O3 nanoparticles doped in polyurethane. J. Mater. Res. 30(11), 1788–1796 (2015a). https://doi.org/10.1557/jmr.2015.101

  38. Nadafan, M., Malekfar, R., Dehghani, Z.: Structural and optical properties of cordierite glass-ceramic doped in polyurethane matrix. AIP Adv. 5(6), 067135–067145 (2015b). http://sci-hub.tw/10.1063/1.4922838

  39. Osman, N.M.: Polypyrrole as a thermoplasmonic. In: 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE) (2015). https://doi.org/10.1109/iccneee.2015.7381353

  40. Paik, Y.H., Kojori, H.S., Kim, S.J.: Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles. Nanotechnology 27(7), 075204–075211 (2016). http://sci-hub.tw/10.1088/0957-4484/27/7/075204

  41. Palermo, G., Sio, L.D., Placido, T., Comparelli, R., Curri, M.L., Bartolino, R., Umeton, C.: Plasmonic thermometer based on thermotropic liquid crystals. Mol. Cryst. Liq. Cryst. 614(1), 93–99 (2015). https://doi.org/10.1080/15421406.2015.1050279

  42. Palermo, G., Cataldi, U., De Sio, L., Bürgi, T., Tabiryan, N., Umeton, C.: Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals. Appl. Phys. Lett. 109(19), 191906–191911 (2016). http://sci-hub.tw/10.1063/1.4967377

  43. Palneedi, H., Park, J.H., Maurya, D., Peddigari, M., Hwang, G.-T., Annapureddy, V., Kim, J.-W., et al.: Laser processing of metal oxides: laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30(14), 1870094–1870102 (2018). http://sci-hub.tw/10.1002/adma.201870094

  44. Palpant, B., Rashidi-Huyeh, M., Gallas, B., Chenot, S., Fisson, S.: Highly dispersive thermo-optical properties of gold nanoparticles. Appl. Phys. Lett. 90(22), 223105 (2007). https://doi.org/10.1063/1.2743936

  45. Pandey, S.K., James, A.R., Raman, R., Chatterjee, S.N., Goyal, A., Prakash, C., Goel, T.C.: Structural, ferroelectric and optical properties of PZT thin films. Physica B 369(1–4), 135–142 (2005). https://doi.org/10.1016/j.physb.2005.08.024

  46. Pezzi, L., De Sio, L., Veltri, A., Placido, T., Palermo, G., Comparelli, R., Curri, M.L., Agostiano, A., Tabiryan, N., Umeton, C.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Phys. Chem. Chem. Phys. 17(31), 20281–20287 (2015). https://doi.org/10.1039/c5cp01377a

  47. Pintilie, L., Pasuk, I., Negrea, R., Filip, L.D., Pintilie, I.: The effect of the top electrode interface on the hysteretic behavior of epitaxial ferroelectric Pb(Zr, Ti)O3 thin films with bottom SrRuO3 electrode. J. Appl. Phys. 112(6), 064116–064123 (2012). http://sci-hub.tw/10.1063/1.4754318

  48. Qian, D.: Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. J. Mater. Sci. 54(5), 4038–4048 (2018). https://doi.org/10.1007/s10853-018-3124-4

  49. Qin, Z., Bischof, J.C.: Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41(3), 1191–1217 (2012). https://doi.org/10.1039/c1cs15184c

  50. Rajib, G.C., Paria, S.: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2011). https://doi.org/10.1021/cr100449n

  51. Rashidi-Huyeh, M., Palpant, B.: Thermal response of nanocomposite materials under pulsed laser excitation. J. Appl. Phys. 96(8), 4475–4482 (2004). https://doi.org/10.1063/1.1794894

  52. Rouquette, J., Haines, J., Bornand, V., Pintard, M., Ph. Papet, C., Bousquet, L., Konczewicz, F.A., Gorelli, S.Hull: Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate. Phys. Rev. B (2004). https://doi.org/10.1103/physrevb.70.014108

  53. Roy, S., Bysakh, S., Subrahmanyam, J.: Metastable face-centered cubic lead zirconate titanate (PZT) and lead lanthanum zirconate titanate (PLZT) nanocrystals synthesized by auto-ignition of metal–polymer gel. J. Mater. Res. 23(3), 719–724 (2008). https://doi.org/10.1557/jmr.2008.0099

  54. Sai, C.D., Ngac, A.B.: Effect of core–shell structure on optical properties of Au–Cu2O nanoparticles. Physica B 532, 216–220 (2018). https://doi.org/10.1016/j.physb.2017.11.048

  55. Saievar Iranizad, E., Dehghani, Z., Nadafan, M.: Nonlinear optical properties of nematic liquid crystal doped with different compositional percentage of synthesis of Fe3O4 nanoparticles. J. Mol. Liq. 190, 6–9 (2014). https://doi.org/10.1016/j.molliq.2013.09.032

  56. Samadi, A., Klingberg, H., Jauffred, L., Kjær, A., Bendix, P.M., Oddershede, L.B.: Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 10(19), 9097–9107 (2018). https://doi.org/10.1039/c8nr02275e

  57. Seol, K.S., Tomita, S., Takeuchi, K., Miyagawa, T., Katagiri, T., Ohki, Y.: Gas-phase production of monodisperse lead zirconate titanate nanoparticles. Appl. Phys. Lett. 81(10), 1893–1895 (2002). https://doi.org/10.1063/1.1505744

  58. Shakeri, A., Abdizadeh, H., Golobostanfard, M.R.: Effects of calcination parameters on the microstructure and morphology of PZT nanoparticles prepared by modified sol-gel method. Adv. Mater. Res. 576, 326–329 (2012). https://doi.org/10.4028/www.scientific.net/amr.576.326

  59. Srinivas, K.: Influence of nanoparticles in PZT ferroelectric material properties and their applications to memory devices. Am. J. Nanosci. Nanotechnol. 2(3), 56–62 (2014). https://doi.org/10.11648/j.nano.20140203.15

  60. Suárez-Gómez, A., Rodríguez-Iglesias, V.: A ‘universal’ bottom-up sol-gel based synthesis of Pzt(1−x)/x submicrometric structures: 1. Dynamic light scattering characterization of precursor stability and aggregation kinetics. Mater. Res. 18(4), 798–805 (2015). https://doi.org/10.1590/1516-1439.004315

  61. Tiwari, D., Dunn, S., Zhang, Q.: Impact of Zr/Ti ratio in the PZT on the photoreduction of silver nanoparticles. Mater. Res. Bull. 44(6), 1219–1224 (2009). https://doi.org/10.1016/j.materresbull.2009.01.016

  62. Vinayakumara, D.R., Manish Kumar, P., Sreekanth, R.P., Kumar, S.: Synthesis, characterization and nonlinear optical studies of novel blue-light emitting room temperature truxene discotic liquid crystals. RSC Adv. 5(34), 26596–26603 (2015). https://doi.org/10.1039/c5ra00873e

  63. Wang, Z.L.: Progress in piezotronics and piezo-phototronics. Adv. Mater. 24(34), 4632–4646 (2012). https://doi.org/10.1002/adma.201104365

  64. Wang, X., Dong, L., Zhang, H., Ruomeng, Yu., Pan, C., Wang, Z.L.: Recent progress in electronic skin. Adv. Sci. 2(10), 1500169–1500190 (2015). http://sci-hub.tw/10.1002/advs.201500169

  65. Xie, S., Ma, F., Liu, Y., Li, J.: Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 core–shell nanofibers and their magnetoelectric coupling. Nanoscale 3(8), 3152–3158 (2011). https://doi.org/10.1039/c1nr10288e

  66. Yen, Y.-T., Chen, C.-W., Fang, M., Chen, Y.-Z., Lai, C.-C., Hsu, C.-H., Wang, Y.-C., et al.: Thermoplasmonics-assisted nanoheterostructured Au-decorated CuInS2 nanoparticles: matching solar spectrum absorption and its application on selective distillation of non-polar solvent systems by thermal solar energy. Nano Energy 15, 470–478 (2015). https://doi.org/10.1016/j.nanoen.2015.04.031

  67. Yin, M., Li, H.P., Tang, S.H., Ji, W.: Determination of nonlinear absorption and refraction by single Z-scan method. Appl. Phys. B Lasers Opt. 70(4), 587–591 (2000). https://doi.org/10.1007/s003400050866

  68. Zak, A.K., Majid, W.H.A.: Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region. Ceram. Int. 37(3), 753–758 (2011). https://doi.org/10.1016/j.ceramint.2010.10.020

  69. Zeng, J., Song, S., Wang, L., Zhang, M., Zheng, L., Lin, C.: Sol–gel preparation of Pb(Zr0.50Ti0.50)O3 ferroelectric thin films using zirconium oxynitrate as the zirconium source. J. Am. Ceram. Soc. 82(2), 461–464 (2004). https://doi.org/10.1111/j.1551-2916.1999.tb20087.x

  70. Zhang, M., Salvado, I.M., Vilarinho, P.M.: Synthesis and characterization of lead zirconate titanate fibers prepared by the sol–gel method: the role of the acid. J. Am. Ceram. Soc. 86(5), 775–781 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03374.x

Download references

Author information

Correspondence to S. M. Hamidi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kodeary, A.K., Gatea, M.A., Haddawi, S.F. et al. Tunable thermo-piezo-plasmonic effect on core/shell nanoparticles under laser irradiation and external electric field. Opt Quant Electron 52, 112 (2020). https://doi.org/10.1007/s11082-020-2232-y

Download citation

Keywords

  • Thermoplasmonic
  • Piezoelectric
  • Core/shell NPs
  • Z-scan technique
  • Nonlinear refractive index
  • Laser irradiation
  • External electric field
  • Schottky barrier