Advertisement

Optimization of a quantum-dot semiconductor optical amplifier (QD-SOA) design using the genetic algorithm

  • Farideh Hakimian
  • Mohammad Reza ShayestehEmail author
  • Mohammad Reza Moslemi
Article
  • 32 Downloads

Abstract

In this paper, we proposed an intelligence model for the optimal design of the quantum-dot semiconductor optical amplifier (QD-SOA). The intelligence model is designed using the artificial neural network (ANN) and genetic algorithm (GA). We first present a simple, accurate, and fast model based on the feedforward ANN. The required data for training the ANN are collected from the numerical solution. The rate equations based on the occupation probability of energy levels and wave propagation equations in the active region of the QD-SOA are solved numerically to calculate optical gain using the slice technique. Then, by using the obtained ANN model and the GA, a new method to design the optimal structure parameters of the QD-SOA is proposed.

Keywords

Quantum dot-semiconductor optical amplifier (QD-SOA) Optimal design Feedforward artificial neural network Genetic algorithm 

Notes

References

  1. Ababneh, J.I., Qasaimeh, O.: Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Trans. Electron Devices 53(7), 1543–1550 (2006)ADSCrossRefGoogle Scholar
  2. Akiyama, T., et al.: Symmetric highly efficient (0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers. IEEE Photonics Technol. Lett. 14(8), 1139–1141 (2002)ADSCrossRefGoogle Scholar
  3. Farmani, A., et al.: High performance polarization-independent quantum dot semiconductor optical amplifier with 22 dB fiber to fiber gain using mode propagation tuning without additional polarization controller. Elsevior Opt. Laser Technol. 93, 127–132 (2017)ADSCrossRefGoogle Scholar
  4. Hakimian, F., Shayesteh, M.R., Moslemi, M.: A proposal for a new method of modeling of the quantum-dot semiconductor optical amplifiers. J. Optoelectron. Nanostruct. 4(3), 1–16 (2019)Google Scholar
  5. Hakimiyan, F., Derhami, V.: Design of quantum dot semiconductor optical amplifier by intelligence methods. Procedia Comput. Sci. 3, 449–452 (2011)CrossRefGoogle Scholar
  6. Izadyar, S.M., et al.: Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing. Appl. Opt. 56(12), 3599–3607 (2017)ADSCrossRefGoogle Scholar
  7. Izadyar, S.M., et al.: Quantum dot semiconductor optical amplifier: investigation of amplified spontaneous emission and noise figure in the presence of second excited state. Opt. Quant. Electron. 50(1), 5 (2018)CrossRefGoogle Scholar
  8. Kim, J., et al.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44(7), 658–666 (2008)ADSCrossRefGoogle Scholar
  9. Matsumoto, T., Komatsu, K., Hosoya, G., Yashima, H.: Performance of all-optical AND gate using photonic-crystal QDSOA at 160 Gb/s. IET J. Electron. Lett. 54(9), 580–582 (2018)CrossRefGoogle Scholar
  10. Ohtsuki, T., Matsuura, M.: Wavelength Conversion of 25-Gbit/s PAM-4 Signals Using a Quantum-Dot SOA. IEEE J. Photonics Technol. Lett. 30(5), 459–462 (2018)ADSCrossRefGoogle Scholar
  11. Qasaimeh, O.: An analytical model for quantum dot semiconductor optical amplifiers. Elsevier J. Opt. Commun. 222, 277–287 (2003)ADSCrossRefGoogle Scholar
  12. Qasaimeh, O.: Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE J. Photonics Technol. Lett. 16(4), 993–995 (2004)ADSCrossRefGoogle Scholar
  13. Qasaimeh, O.: Linewidth enhancement factor of quantum dot lasers. Springer J. Opt. Quantum Electron. 37(5), 495–507 (2005a)CrossRefGoogle Scholar
  14. Qasaimeh, O.: Characteristics of wavelength conversion of short optical pulses in quantum dot semiconductor optical amplifiers. Springer J. Opt. Quantum Electron. 37(7), 661–673 (2005b)CrossRefGoogle Scholar
  15. Qasaimeh, O.: Dynamics of optical pulse amplification and saturation in multiple state quantum dot semiconductor optical amplifiers. Springer J. Opt. Quantum Electron. 41(2), 99–111 (2009)CrossRefGoogle Scholar
  16. Shi, S., et al.: Refined sectionalized method of QD-SOA. Springer J. Opt. 125(1), 504–507 (2014)Google Scholar
  17. Shojaei-Oghani, M., Yavari, M.H.: Modeling the effects of interband and intraband transitions on phase and gain stabilities of quantum dot semiconductor optical amplifiers. Opt. Quant. Electron. 50(10), 374 (2018)CrossRefGoogle Scholar
  18. Taleb, H., et al.: Quantum-dot semiconductor optical amplifiers: state space model versus rate equation model. Adv. OptoElectron. 2013, Article ID 831852, 8 pages (2013)Google Scholar
  19. Taleb, H., et al.: Quantum dot semiconductor optical amplifiers in state space model. Chin. J. Comput. Phys. 30(4), 605–612 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Yazd BranchIslamic Azad UniversityYazdIran
  2. 2.Department of Electrical Engineering, Zarghan BranchIslamic Azad UniversityZarghanIran

Personalised recommendations