Advertisement

3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers

  • 39 Accesses

Abstract

In this paper, the general Langevin equations of motion for the polystyrene bead linked to the lambda-phage worm-like chain DNA molecule embedded in the fluid under the nonlinear optical tweezers is derived in 3D space. Using the finite difference method, the dynamical properties of the bead trapped by the nonlinear optical tweezers using a thin layer of Acid Blue 29 are numerically studied. Results in, the stretched length of the lambda-phage worm-like chain DNA molecule can be controlled in 3D space by finely tuning of the laser power.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

  2. Bauman, C.G., et al.: Stretching of single collapsed DNA molecule. Biophys. J. 78, 1965–1978 (2000)

  3. Dufresne, R., Grier, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics”. Rev. Sci. Instrum. 69, 1974–1977 (1998)

  4. European Network of Excellence for Biophotonics: Acousto-Optical Deflectors for Optical Tweezer Arrays. Networking for Better Health Care. http://www.photonics4life.eu/lavout/set/consortium/P4L-DB/all-items/ (2014)

  5. Fu, W.B., Wang, X.L., Zhang, X.H., Ran, S.Y., Yan, J., ad Li, M.: Compaction dynamics of single DNA molecules under tension. J. Am. Chem. Soc. 128, 15040–15041 (2006)

  6. Gross, P., Laurens, N., Oddershede, L.B., Bockelmann, U., Peterman, E.J.G., Wuite, G.J.L.: Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 11, 731–736 (2011)

  7. Hao, Y., Canavan, C., Susan, S.T., Rodrigo, A.M.: Integrated method to attach DNA handles and functional select proteins to study folding and protein-ligand interaction with optical tweezers. Sci. Rep. 7, 1–8 (2017)

  8. Ho, Q.Q., Mai, V.L., Hoang, D.H., Zhuang, D.: The simulation of the stabilizing process of dielectric nanoparticle in optical trap using counter-propagating pulsed laser beams. Chin. Opt. Lett. 8(3), 332–334 (2010)

  9. Ho, Q.Q., Thai, D.T., Doan, Q.T., Nguyen, M.T.: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)

  10. Huisstede, H.G.: Scanning Probe Optical Tweezers: A New Tool to Study DNA-Protein Interaction. Febodruk B.V., Enschede (2006)

  11. Kalantarifard, F., Elahi, P., Makey, G., Maragò, M.O., Ilday, F.O., Volpe, G.: Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nat. Commun. 10, 2683 (2019)

  12. MacDonald, M.P., Paterson, L., Sibbett, W., Dholakia, K., Bryant, P.E.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)

  13. Mangeol, P., Cote, D., Bizebard, T., Legrand, O., Bockelmann, U.: Probing DNA and RNA single molecules with a double optical tweezer. Eur. Phys. E 19, 311–317 (2006)

  14. Neuman, C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)

  15. Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Opt. Phys. Mat. 23, 1450020 (2014)

  16. Saleh, E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, Hoboken (1991)

  17. Shabestari, M.H., Meijering, A.E.C., Roos, W.H., Wuite, G.J.L., Peterman, E.J.G.: Recent advance in biological single-molecule applications of optical tweezers and fluorescence microscopy. Method Enzymol. 582, 85–115 (2017)

  18. Tanaka, Y., Kawada, H., Tsutsui, S., Ishikawa, M., Kitajima, H.: Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques. Opt. Express 17, 24102–24111 (2009)

  19. Thai, D.T., Chu, V.L., Ho, Q.Q.: Recorrection stretch function of the spring-like elastic DNA molecules. Int. J. Eng. Innov. Technol. (IJEIT) 3(9), 1–4 (2014)

  20. Thai, D.T., Doan, Q.K., Bui, X.K., Ho, Q.Q.: 3D controlling the bead linked to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant. Electron. 48, 561 (2016)

  21. Thai, D.T., Doan, Q.K., Ho, Q.Q.: Acousto-optical tweezers for stretch of DNA molecule. Opt. Quant. Electron. 50, 51 (2018)

  22. Trung, T.D., Kien, B.X., Tung, N.T., Quy, H.Q.: Dynamics of polystyrene beads linked to DNA molecules under single optical tweezers: a numerical study using full normalized Langevin equation. J. Nonlinear Opt. Phys. Mater. 25(4), 1650054 (2016)

  23. Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

  24. Wang, R.C., Shen, Y., Li, S., Liu, S.: Optical tweezer array system based on 2D photonic crystals. Phys. Proc. 22, 493–497 (2011)

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.03-2018.342.

Author information

Correspondence to Thang Nguyen Manh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manh, T.N., Quang, Q.H., Doan, T.T. et al. 3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers. Opt Quant Electron 52, 51 (2020). https://doi.org/10.1007/s11082-019-2164-6

Download citation

Keywords

  • Lasers
  • Instruments
  • Measurement and metrology
  • Nonlinear optics
  • Optical devices
  • Biophysics