Advertisement

Porous glass density tailoring by femtosecond laser pulses

  • Lijing ZhongEmail author
  • R. A. Zakoldaev
  • M. M. Sergeev
  • V. P. Veiko
  • Zhengyan Li
Article
  • 22 Downloads
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies 2019

Abstract

In this work, a new domain of femtosecond laser-induced densification was exploited as a method for space-selective control of porous glass matrix density. The estimated refractive index change (Δn) of laser-induced modified region shows a core-cladding structure with the Δn in the range of 10−4–10−2 depending on laser pulse energy and translating speed. The approximate linear relationship between glass matrix density vs Δn is theoretically proved by employing the Lorentz–Lorenz equation. Thus, the positive and negative Δn of modified region are interpreted as the densification and rarefaction of glass matrix, respectively.

Keywords

Femtosecond laser Porous glass Waveguide Refractive index change Glass matrix density 

Notes

Acknowledgements

The reported study was financial supported by Russian Science Foundation (Project No. 19-79-10208). Zhong L. acknowledges the support from the China Scholarship Council (201708090140). R.Z. is grateful to Avesta Ltd. for the opportunity to work with the femtosecond laser.

References

  1. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  2. Canning, J., Lancry, M., Cook, K., Weickman, A., Brisset, F., Poumellec, B.: Anatomy of a femtosecond laser processed silica waveguide. Opt. Mater. Express 1(5), 998–1008 (2011)ADSCrossRefGoogle Scholar
  3. Chen, F., Vázquez de Aldana, J.R.: Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 8(2), 251–275 (2014)ADSCrossRefGoogle Scholar
  4. Chen, P., Hou, S., Yang, Y., Chen, Z., Yang, L., Li, J., Dai, N.: ITO nanoparticles enhanced upconversion luminescence in Er3+/Yb3+-codoped silica glasses. Nanoscale 10(7), 3299–3306 (2018a)CrossRefGoogle Scholar
  5. Chen, P., Chen, Z., Hou, S., Shen, X., Chu, Y., Yang, Y., Dai, N., et al.: In-situ growth of highly monodisperse ITO nanoparticles regulated by mesoporous silica glasses. Mater. Des. 151, 53–59 (2018b)CrossRefGoogle Scholar
  6. Chen, P., Mao, Y., Hou, S., Chen, Y., Liu, X., Lou, Y., Chen, A., Yang, L., Li, J., Dai, N.: Growth of SnO2 nanocrystals co-doped with Eu3+ for highly enhanced photoluminescence in mesoporous silica glasses. J. Mater. Chem. C 7(6), 1568–1574 (2019)CrossRefGoogle Scholar
  7. Chu, Y., Yang, Y., Liao, L., Liu, Y., Ma, Y., Hu, X., Wang, Y., et al.: 3D nanoporous silica rods for extra-large-core high-power fiber lasers. ACS Photonics 5(10), 4014–4021 (2018)CrossRefGoogle Scholar
  8. Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)ADSCrossRefGoogle Scholar
  9. Fedotov, S.S., Okhrimchuk, A.G., Lipatiev, A.S., Stepko, A.A., Piyanzina, K.I., Yu Shakhgildyan, G., Yu Presniakov, M., Glebov, I.S., Lotarev, S.V., Sigaev, V.N.: 3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses. Opt. Lett. 43(4), 851–854 (2018)ADSCrossRefGoogle Scholar
  10. Hadden, J.P., Bharadwaj, V., Sotillo, B., Rampini, S., Osellame, R., Witmer, J.D., Ferrari, M., et al.: Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing. Opt. Lett. 43(15), 3586–3589 (2018)ADSCrossRefGoogle Scholar
  11. Iskhakova, L.D., Mashinsky, V.M., Milovich, F.O., Velmiskin, V.V., Plastinin, E.A., Firstov, S.V., Lukashova, M.V., Somov, P.A., Dianov, E.M.: Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms. J. Non Cryst. Solids 503, 28–35 (2019)ADSCrossRefGoogle Scholar
  12. Kostyuk, G.K., Sergeev, M.M., Yakovlev, E.B.: The processes of modified microareas formation in the bulk of porous glasses by laser radiation. Laser Phys. 25(6), Article ID 066003 (2015)ADSCrossRefGoogle Scholar
  13. Kreisberg, V.A., Antropova, T.V., Kalinina, S.V.: Formation of micro-and mesoporous substructures in the course of the leaching process of two-phase alkali borosilicate glass. Glass Phys. Chem. 40(3), 384–387 (2014)CrossRefGoogle Scholar
  14. Liao, Y., Shen, Y., Qiao, L., Chen, D., Cheng, Y., Sugioka, K., Midorikawa, K.: Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt. Lett. 38(2), 187–189 (2013a)ADSCrossRefGoogle Scholar
  15. Liao, Y., Cheng, Y., Liu, C., Song, J., He, F., Shen, Y., Sugioka, K., et al.: Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip 13(8), 1626–1631 (2013b)CrossRefGoogle Scholar
  16. Liao, Y., Ni, J., Qiao, L., Huang, M., Bellouard, Y., Sugioka, K., Cheng, Y.: High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2(4), 329–334 (2015)ADSCrossRefGoogle Scholar
  17. Ma, H., Zakoldaev, R.A., Rudenko, A., Sergeev, M.M., Veiko, V.P., Itina, T.E.: Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications. Opt. Express 25(26), 33261–33270 (2017)ADSCrossRefGoogle Scholar
  18. Mansour, I., Caccavale, F.: An improved procedure to calculate the refractive index profile from the measured near-field intensity. J. Lightwave Technol. 14, 423–428 (1996)ADSCrossRefGoogle Scholar
  19. Maruo, Y.Y.: Measurement of ambient ozone using newly developed porous glass sensor. Sens. Actuators B Chem. 126(2), 485–491 (2007)CrossRefGoogle Scholar
  20. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)Google Scholar
  21. Szameit, A., Burghoff, J., Pertsch, T., Nolte, S., Tünnermann, A., Lederer, F.: Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 14(13), 6055–6062 (2006)ADSCrossRefGoogle Scholar
  22. Thomson, R.R., Psaila, N.D., Bookey, H.T., Reid, D.T., Kar, A.K.: Controlling the cross-section of ultrafast laser inscribed optical waveguides. In: Osellame, R., Cerullo, G., Ramponi, R. (eds.) Femtosecond Laser Micromachining, pp. 93–125. Springer, Berlin (2012)CrossRefGoogle Scholar
  23. Veiko, V.P., Kudryashov, S.I., Sergeev, M.M., Zakoldaev, R.A., Danilov, P.A., Ionin, A.A., Anfimova, I.N., et al.: Femtosecond laser-induced stress-free ultra-densification inside porous glass. Laser Phys. Lett. 13(5), Article ID 055901 (2016)ADSCrossRefGoogle Scholar
  24. Veiko, V.P., Zakoldaev, R.A., Sergeev, M.M., Danilov, P.A., Kudryashov, S.I., Kostiuk, G.K., Medvedev, O.S., et al.: Direct laser writing of barriers with controllable permeability in porous glass. Opt. Express 26(21), 28150–28160 (2018)ADSCrossRefGoogle Scholar
  25. Yalizay, B., Morova, Y., Dincer, K., Ozbakir, Y., Jonas, A., Erkey, C., Akturk, S., et al.: Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation. Opt. Mater. 47, 478–483 (2015)ADSCrossRefGoogle Scholar
  26. Zhou, S., Jiang, N., Zhu, B., Yang, H., Ye, S., Lakshminarayana, G., Hao, J., Qiu, J.: Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers. Adv. Funct. Mater. 18(9), 1407–1413 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Huazhong University of Science & TechnologyWuhanChina

Personalised recommendations