Advertisement

Study of optical behaviour of Eu3+ and Tb3+ doped zirconate perovskite phosphors prepared by molten salt technique

  • Shambhavi Katyayan
  • Sadhana AgrawalEmail author
Article
  • 12 Downloads

Abstract

This paper gives a keen insight of the study of spectroscopic and optical behavior of Eu3+ and Tb3+ doped calcium zirconate, barium zirconate and strontium zirconate perovskite phosphors synthesized by molten salt synthesis (MSS) technique. Here, the low temperature MSS technique uses molten chloride salt sodium chloride NaCl that increases solid–solid diffusion rate for creating an active reaction medium. These phosphors were subjected to sintering at a temperature of 950 °C with Eu3+ and Tb3+ ions doping concentration varying from 0 to 2 mol%. The Powder X-ray diffractometry technique was used to study of crystallographic behavior of synthesized phosphors. In order to study the morphological and topographical aspects, field-emission scanning electron microscopy and transmission electron microscopy analyses were done. The Fourier transform infrared analysis generates the fingerprint of the synthesized phosphors confirming the presence of all constituent elements. The photoluminescent (PL) characteristics of synthesized phosphors were studied on exciting CaZrO3:Eu3+, Tb3+ with 225 nm, BaZrO3:Eu3+, Tb3+ with 229 nm and SrZrO3:Eu3+, Tb3+ with 235 nm excitation wavelength. The PL emission spectra show variable emissions over a broad spectral region corresponding to 5D47F6, 5D47F5, 5D47F4 and 5D47F3 hypersensitive electronic transitions of Tb3+ ions along with 5D07F0, 5D07F1 and 5D07F2 induced electric dipole and magnetic dipole transitions of Eu3+ ions. These color tunable phosphors with increased PL output confirm their suitability for photonics, optoelectronics and display device applications.

Keywords

Optical materials Perovskites Molten salt synthesis Magnetic dipole transitions Induced electric dipole transitions 

Notes

Acknowledgements

The authors sincerely acknowledge the STIC Kochi University for providing TEM facility.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Alarcon, J., van der Voort, D., Blasse, G.: Synthesis, efficient Eu3+ luminescence in non-lanthanide host lattices. Mater. Res. Bull. 27, 467–472 (1992)CrossRefGoogle Scholar
  2. Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)CrossRefGoogle Scholar
  3. Chemarin, C., Rosman, N., Pagnier, T., Lucazeau, G.: A high-pressure raman study of mixed perovskites BaCeZrO3. J. Solid State Chem. 149, 298–307 (2000)ADSCrossRefGoogle Scholar
  4. Deng, H., Qiu, Y., Yang, S.: General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem. 19(7), 976–982 (2009)CrossRefGoogle Scholar
  5. Dwivedi, Y., Zilio, S.C.: Advances in rare earth spectroscopy and applications. J. Nanosci. Nanotechnol. 14, 1578–1596 (2014)CrossRefGoogle Scholar
  6. Evangeline, B., Abdul Azeem, P., Prasada Rao, R., Swati, G., Haranath, D.: Structural and luminescent features of cerium doped CaZrO3 blue nanophosphors. J. Alloys Compd. 705, 618–623 (2017)CrossRefGoogle Scholar
  7. Fahmi, D.: On luminescence and energy transfer in oxyapatite codoped with Eu3+ and Tb3+ ions. J. Mater. Environ. Sci. 7(12), 4411–4418 (2016)Google Scholar
  8. Feng, Y., Huang, J., Li, C., Hu, G., Liu, J., Yu, X.: Structure, energy transfer and tunable photoluminescence of Sr7Zr(PO4)6:Tb3+, Eu3+ phosphors for near-UV white LEDs. J. Alloys Compd. 706, 478–484 (2017)CrossRefGoogle Scholar
  9. Fernandez Lopez, E., SanchezEscribano, V., Panizza, M., Carnasciali, M.M., Busca, G.: Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 11, 1891–1897 (2001)CrossRefGoogle Scholar
  10. Furubayashi, A., Kimura, T.: Preparation of needlelike Sr0.5Ba0.5Nb2O6 particles using molten SrCl2–BaCl2 salt. J. Ceram. Soc. Jpn. 119(4), 282–284 (2011)CrossRefGoogle Scholar
  11. Garcıa-Rosales, G., Mercier-Bion, F., Drot, R., Lagarde, G., Roques, J., Simoni, E.: Energy transfer from Tb3+ to Eu3+ ions sorbed on SrTiO3 surface. J. Lumin. 132, 1299–1306 (2012)CrossRefGoogle Scholar
  12. Gupta, S.K., Mohapatra, M., Natarajan, V., Godbole, S.V.: Photoluminescence investigations of the near white light emitting perovskite ceramic SrZrO3: Dy3+ prepared via gel-combustion route. Int. J. Appl. Ceram. Technol. 10(4), 593–602 (2013)CrossRefGoogle Scholar
  13. Gupta, S.K., Ghosh, P.S., Yadav, A.K., Pathak, N., Arya, A., Jha, S.N., Bhattacharyya, D., Kadam, R.M.: Luminescence properties of SrZrO3:Tb3+ perovskite: host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg. Chem. 55, 1728–1740 (2016)CrossRefGoogle Scholar
  14. Haro-Gonzalez, P., Karlsson, M., Gaita, S.M., Knee, C.S., Bettinelli, M.: Eu3+ as a luminescent probe for the local structure of trivalent dopant ions in barium zirconate-based proton conductors. Solid State Ion 247–248, 94–97 (2013)CrossRefGoogle Scholar
  15. Ianos, R., Barvinschi, P.: Solution combustion synthesis of calcium zirconate, CaZrO3 powders. J. Solid State Chem. 183, 491–496 (2010)ADSCrossRefGoogle Scholar
  16. Katyayan, S., Agrawal, S.: Structural Investigation of RE doped CZO perovskites. OSA technical digest, Optical Society of America. Paper Th3A.82 (2016).  https://doi.org/10.1364/PHOTONICS.2016.Th3A.82
  17. Katyayan, S., Agrawal, S.: Synthesis and investigation of structural and optical properties of Eu3+ doped CaZrO3 phosphor. Mater. Today Proc. 4(8), 8016–8024 (2017a).  https://doi.org/10.1016/j.matpr CrossRefGoogle Scholar
  18. Katyayan, S., Agrawal, S.: Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J. Mater. Sci. Mater. Electron. 28, 18442–18454 (2017b)CrossRefGoogle Scholar
  19. Katyayan, S., Agrawal, S.: Dynamics of concentration quenching in Eu3+ and Tb3+ doped calcium dioxide-oxozirconium perovskite. J. Mater. Sci. Mater. Electron. 29, 2373–2383 (2017c)CrossRefGoogle Scholar
  20. Katyayan, S., Agrawal, S.: Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+, Tb3+ perovskites. Methods Appl. Fluoresc. 6, 035002–035012 (2018)ADSCrossRefGoogle Scholar
  21. Kimura, T.: Molten salt synthesis of ceramic powders. In: Sikalidis, C. (ed.) Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications. InTech Open, Rijeka (2011). ISBN 978-953-307-505-1Google Scholar
  22. Lee, J.S.: Molten salt synthesis of YAlO3 powders. Mater. Sci. Pol. 31(2), 240–245 (2013)ADSCrossRefGoogle Scholar
  23. Liu, Y., Lu, Y., Xu, M., Zhou, L., Shi, S.: Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Mater. Chem. Phys. 114, 37–42 (2009)CrossRefGoogle Scholar
  24. Liu, X., Zhang, J., Ma, X., Sheng, H., Feng, P., Shi, L., Hu, R., Wang, Y.: Violet–blue up conversion photostimulated luminescence properties and first principles calculations of a novel un-doped CaZrO3 phosphor for application in optical storage. J. Alloys Compd. 550, 451–458 (2013)CrossRefGoogle Scholar
  25. Lu, Z., Tang, Y., Chen, L., Li, Y.: Shape-controlled synthesis and characterization of BaZrO3 microcrystals. J. Cryst. Growth 266, 539–544 (2004)ADSCrossRefGoogle Scholar
  26. Malghe, Y.S., Yadav, U.C.: Synthesis, characterization and investigation of dielectric properties of nanosized SrZrO3. J. Therm. Anal. Calorim. 122, 589–594 (2015)CrossRefGoogle Scholar
  27. Marı, B., Singh, K.C., Sahal, M., Khatkar, S.P., Taxak, V.B., Kumar, M.: Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors. J. Lumin. 130, 2128–2132 (2010)CrossRefGoogle Scholar
  28. Padma Kumar, H., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K., Koshy, J.: Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J. Alloys Compd. 458, 528–531 (2008)CrossRefGoogle Scholar
  29. Prasanth, C.S., Padma Kumar, H., Pazhani, R., Solomon, S., Thomas, J.K.: Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J. Alloys Compd. 464, 306–309 (2008)CrossRefGoogle Scholar
  30. Rosa, I.L.V., Oliveiraa, M.C., Assis, M., Ferrer, M., André, R.S., Longo, E., Gurgel, M.F.C.: A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceram. Int. 41, 3069–3074 (2015)CrossRefGoogle Scholar
  31. Shimokawa, Y., Sakaida, S., Iwata, S., Inoue, K., Honda, S., Iwamoto, Y.: Synthesis and characterization of Eu3+ doped CaZrO3-based perovskite type phosphors. Part II: PL properties related to the two different dominant Eu3+ substitution sites. J. Lumin. 157, 113–118 (2015)CrossRefGoogle Scholar
  32. Singh, V., Rai, V.K., Al-Shamery, K., Haase, M., Kim, S.H.: NIR to visible frequency upconversion in Er3+ and Yb3+ codoped BaZrO3 phosphor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 108, 141–145 (2013)ADSCrossRefGoogle Scholar
  33. Sun, D., Li, D., Zhu, Z., Xiao, J., Tao, Z., Liu, W.: Photoluminescence properties of europium and titanium codoped BaZrO3 phosphors powders synthesized by the solid state reaction method. Opt. Mater. 34, 1890–1896 (2012)ADSCrossRefGoogle Scholar
  34. Tamrakar, R.K., Bisen, D.P., Brahme, N.: Comparison of photoluminescence properties of Gd2O3 phosphor synthesized by combustion and solid state reaction method. J. Radiat. Res. Appl. Sci. 7, 550–559 (2014)CrossRefGoogle Scholar
  35. Taxak, V.B., Arora, R., Khatkar, S.P.: Synthesis, structural and optical properties of SrZrO3:Eu3+ phosphor. J. Rare Earths 32(4), 293–297 (2014)CrossRefGoogle Scholar
  36. Thomas, J.K., Padma Kumar, H., Pazhani, R., Solomon, S., Jose, R., Koshy, J.: Synthesis of strontium zirconate as nanocrystals through a single step combustion process. Mater. Lett. 61, 1592–1595 (2007)CrossRefGoogle Scholar
  37. Vali, R.: Band structure and dielectric properties of orthorhombic SrZrO3. Solid State Commun. 145, 497–501 (2008)ADSCrossRefGoogle Scholar
  38. Vivek, K., Fergus Jeffrey, W.: Effects of dispersant addition on the synthesis of indium-doped calcium zirconate by co-precipitation techniques. J. Mater. Sci. 42(15), 6117–6122 (2007)CrossRefGoogle Scholar
  39. Wang, T.X., Liu, S.Z., Chen, J.: Molten salt synthesis of SrTiO3 nanocrystals using nanocrystalline TiO2 as a precursor. Powder Technol. 205, 289–291 (2011)CrossRefGoogle Scholar
  40. Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y., Zhang, Q.Y.: Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R 71, 1–34 (2010)CrossRefGoogle Scholar
  41. Yuan, Y., Zhang, X., Liu, L., Jiang, X., Lv, J., Li, Z., Zou, Z.: Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3 Int. J. Hydrog. Energy 33, 5941–5946 (2008)CrossRefGoogle Scholar
  42. Zhang, A., Lu, M., Wang, S., Zhou, G., Wang, S., Zhou, Y.: Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J. Alloys Compd. 433, L7–L11 (2007)CrossRefGoogle Scholar
  43. Zhang, H., Fu, X., Niu, S., Xin, Q.: Synthesis and photoluminescence properties of Eu3+ doped AZrO3 (A = Ca, Sr, Ba) perovskite. J. Alloys Compd. 459, 103–106 (2008)CrossRefGoogle Scholar
  44. Zhang, A., Lu, M., Zhou, G., Zhou, Y., Qiu, Z., Ma, Q.: Synthesis, characterization and luminescence of Eu3+ doped SrZrO3 nanocrystals. J. Alloys Compd. 468, L17–L20 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RaipurRaipurIndia

Personalised recommendations